Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-wnfanf | Structured version Visualization version GIF version |
Description: When 𝜑 is substituted for 𝜓, this statement expresses that weak nonfreeness implies the universal form of nonfreeness. (Contributed by BJ, 9-Dec-2023.) |
Ref | Expression |
---|---|
bj-wnfanf | ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-wnf1 34826 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)) | |
2 | bj-19.23bit 34800 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑥𝜓)) | |
3 | 1, 2 | sylg 1826 | 1 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |