Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-wnfanf Structured version   Visualization version   GIF version

Theorem bj-wnfanf 34828
Description: When 𝜑 is substituted for 𝜓, this statement expresses that weak nonfreeness implies the universal form of nonfreeness. (Contributed by BJ, 9-Dec-2023.)
Assertion
Ref Expression
bj-wnfanf ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → ∀𝑥𝜓))

Proof of Theorem bj-wnfanf
StepHypRef Expression
1 bj-wnf1 34826 . 2 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓))
2 bj-19.23bit 34800 . 2 ((∃𝑥𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑥𝜓))
31, 2sylg 1826 1 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator