Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alexbii | Structured version Visualization version GIF version |
Description: Biconditional form of aleximi 1835. (Contributed by BJ, 16-Nov-2020.) |
Ref | Expression |
---|---|
alexbii.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
alexbii | ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alexbii.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimpd 228 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | aleximi 1835 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
4 | 1 | biimprd 247 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 4 | aleximi 1835 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜒 → ∃𝑥𝜓)) |
6 | 3, 5 | impbid 211 | 1 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: exbi 1850 exbidh 1871 exintrbi 1895 eleq2d 2824 ralrexbidOLD 3251 bnj956 32656 ttrclselem2 33712 bj-2exbi 34724 |
Copyright terms: Public domain | W3C validator |