MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexbii Structured version   Visualization version   GIF version

Theorem alexbii 1876
Description: Biconditional form of aleximi 1875. (Contributed by BJ, 16-Nov-2020.)
Hypothesis
Ref Expression
alexbii.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
alexbii (∀𝑥𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))

Proof of Theorem alexbii
StepHypRef Expression
1 alexbii.1 . . . 4 (𝜑 → (𝜓𝜒))
21biimpd 221 . . 3 (𝜑 → (𝜓𝜒))
32aleximi 1875 . 2 (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
41biimprd 240 . . 3 (𝜑 → (𝜒𝜓))
54aleximi 1875 . 2 (∀𝑥𝜑 → (∃𝑥𝜒 → ∃𝑥𝜓))
63, 5impbid 204 1 (∀𝑥𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wal 1599  wex 1823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853
This theorem depends on definitions:  df-bi 199  df-ex 1824
This theorem is referenced by:  exbi  1891  exbidh  1912  exintrbi  1937  eleq2d  2845  bnj956  31446
  Copyright terms: Public domain W3C validator