|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > alexbii | Structured version Visualization version GIF version | ||
| Description: Biconditional form of aleximi 1831. (Contributed by BJ, 16-Nov-2020.) | 
| Ref | Expression | 
|---|---|
| alexbii.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| alexbii | ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | alexbii.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | biimpd 229 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| 3 | 2 | aleximi 1831 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) | 
| 4 | 1 | biimprd 248 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) | 
| 5 | 4 | aleximi 1831 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜒 → ∃𝑥𝜓)) | 
| 6 | 3, 5 | impbid 212 | 1 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 | 
| This theorem is referenced by: exbi 1846 exbidh 1866 exintrbi 1890 eleq2d 2826 ralrexbidOLD 3106 rexeq 3321 rexss 4058 ttrclselem2 9767 bnj956 34791 bj-2exbi 36617 | 
| Copyright terms: Public domain | W3C validator |