![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2192. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
alrimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2180 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | alrimih 1818 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 Ⅎwnf 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-12 2163 |
This theorem depends on definitions: df-bi 206 df-ex 1774 df-nf 1778 |
This theorem is referenced by: sbimd 2229 sbbid 2230 nf5d 2272 axc4i 2307 19.12 2312 nfsbd 2513 mobid 2536 mo3 2550 eubid 2573 2moexv 2615 eupicka 2622 2moex 2628 2mo 2636 abbid 2795 nfcd 2883 nfabdwOLD 2919 ceqsalgALT 3501 ceqsexOLD 3517 vtocldf 3539 rspcdf 3591 elrab3t 3675 morex 3708 sbciedf 3814 csbiebt 3916 csbiedf 3917 ssrd 3980 eqrd 3994 invdisj 5123 zfrepclf 5285 eusv2nf 5384 ssopab2bw 5538 ssopab2b 5540 imadif 6623 eusvobj1 7395 ssoprab2b 7471 eqoprab2bw 7472 ovmpodxf 7551 axrepnd 10586 axunnd 10588 axpownd 10593 axregndlem1 10594 axacndlem1 10599 axacndlem2 10600 axacndlem3 10601 axacndlem4 10602 axacndlem5 10603 axacnd 10604 mreexexd 17593 acsmapd 18511 isch3 30966 ssrelf 32316 eqrelrd2 32317 esumeq12dvaf 33521 bnj1366 34331 bnj571 34408 bnj964 34445 iota5f 35190 bj-hbext 36079 bj-nfext 36081 wl-mo3t 36935 wl-ax11-lem3 36943 cover2 37077 alrimii 37481 mpobi123f 37524 mptbi12f 37528 ss2iundf 42924 pm11.57 43662 pm11.59 43664 tratrb 43811 hbexg 43831 e2ebindALT 44204 mpteq1dfOLD 44449 mpteq12daOLD 44456 dvnmul 45169 stoweidlem34 45260 sge0fodjrnlem 45642 pimrecltpos 45934 pimrecltneg 45950 smfaddlem1 45989 smfresal 46014 smfinflem 46043 smfinfmpt 46045 ichnfim 46642 ovmpordxf 47228 setrec1lem4 47947 |
Copyright terms: Public domain | W3C validator |