![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2205. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
alrimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2193 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | alrimih 1821 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 Ⅎwnf 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-ex 1777 df-nf 1781 |
This theorem is referenced by: sbalex 2240 sbimd 2243 sbbid 2244 nf5d 2283 axc4i 2321 19.12 2326 nfsbd 2525 mobid 2548 mo3 2562 eubid 2585 2moexv 2625 eupicka 2632 2moex 2638 2mo 2646 abbid 2808 nfcd 2896 ceqsalgALT 3516 ceqsexOLD 3529 vtocldf 3560 rspcdf 3609 elrab3t 3694 morex 3728 sbciedf 3836 csbiebt 3938 csbiedf 3939 ssrd 4000 eqrd 4015 invdisj 5134 zfrepclf 5297 eusv2nf 5401 ssopab2bw 5557 ssopab2b 5559 imadif 6652 eusvobj1 7424 ssoprab2b 7502 eqoprab2bw 7503 ovmpodxf 7583 axrepnd 10632 axunnd 10634 axpownd 10639 axregndlem1 10640 axacndlem1 10645 axacndlem2 10646 axacndlem3 10647 axacndlem4 10648 axacndlem5 10649 axacnd 10650 mreexexd 17693 acsmapd 18612 isch3 31270 ssrelf 32635 eqrelrd2 32636 esumeq12dvaf 34012 bnj1366 34822 bnj571 34899 bnj964 34936 iota5f 35704 bj-hbext 36693 bj-nfext 36695 wl-mo3t 37557 wl-ax11-lem3 37568 cover2 37702 alrimii 38106 mpobi123f 38149 mptbi12f 38153 ss2iundf 43649 pm11.57 44385 pm11.59 44387 tratrb 44534 hbexg 44554 e2ebindALT 44927 modelaxreplem2 44944 mpteq1dfOLD 45180 mpteq12daOLD 45187 dvnmul 45899 stoweidlem34 45990 sge0fodjrnlem 46372 pimrecltpos 46664 pimrecltneg 46680 smfaddlem1 46719 smfresal 46744 smfinflem 46773 ichnfim 47389 ovmpordxf 48184 setrec1lem4 48921 |
Copyright terms: Public domain | W3C validator |