| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2208. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
| alrimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | alrimih 1824 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sbalex 2243 sbimd 2246 sbbid 2247 nf5d 2284 axc4i 2321 19.12 2326 nfsbd 2520 mobid 2543 mo3 2557 eubid 2580 2moexv 2620 eupicka 2627 2moex 2633 2mo 2641 abbid 2797 nfcd 2884 ceqsalgALT 3481 ceqsexOLD 3494 vtocldf 3523 rspcdf 3572 elrab3t 3655 morex 3687 sbciedf 3793 csbiebt 3888 csbiedf 3889 ssrd 3948 eqrd 3963 invdisj 5088 zfrepclf 5241 eusv2nf 5345 ssopab2bw 5502 ssopab2b 5504 imadif 6584 eusvobj1 7362 ssoprab2b 7438 eqoprab2bw 7439 ovmpodxf 7519 axrepnd 10523 axunnd 10525 axpownd 10530 axregndlem1 10531 axacndlem1 10536 axacndlem2 10537 axacndlem3 10538 axacndlem4 10539 axacndlem5 10540 axacnd 10541 mreexexd 17589 acsmapd 18495 isch3 31220 ssrelf 32593 eqrelrd2 32594 esumeq12dvaf 34014 bnj1366 34812 bnj571 34889 bnj964 34926 iota5f 35704 bj-hbext 36691 bj-nfext 36693 wl-mo3t 37557 wl-ax11-lem3 37568 cover2 37702 alrimii 38106 mpobi123f 38149 mptbi12f 38153 ss2iundf 43641 pm11.57 44371 pm11.59 44373 tratrb 44519 hbexg 44539 e2ebindALT 44911 modelaxreplem2 44962 permaxrep 44989 dvnmul 45934 stoweidlem34 46025 sge0fodjrnlem 46407 pimrecltpos 46699 pimrecltneg 46715 smfaddlem1 46754 smfresal 46779 smfinflem 46808 ichnfim 47458 ovmpordxf 48320 setrec1lem4 49672 |
| Copyright terms: Public domain | W3C validator |