![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2198. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
alrimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2186 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | alrimih 1824 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-ex 1780 df-nf 1784 |
This theorem is referenced by: sbimd 2235 sbbid 2236 nf5d 2278 axc4i 2313 19.12 2318 nfsbd 2519 mobid 2542 mo3 2556 eubid 2579 2moexv 2621 eupicka 2628 2moex 2634 2mo 2642 abbid 2801 nfcd 2889 nfabdwOLD 2925 ceqsalgALT 3507 ceqsexOLD 3523 vtocldf 3545 rspcdf 3600 elrab3t 3683 morex 3716 sbciedf 3822 csbiebt 3924 csbiedf 3925 ssrd 3988 eqrd 4002 invdisj 5133 zfrepclf 5295 eusv2nf 5394 ssopab2bw 5548 ssopab2b 5550 imadif 6633 eusvobj1 7406 ssoprab2b 7482 eqoprab2bw 7483 ovmpodxf 7562 axrepnd 10593 axunnd 10595 axpownd 10600 axregndlem1 10601 axacndlem1 10606 axacndlem2 10607 axacndlem3 10608 axacndlem4 10609 axacndlem5 10610 axacnd 10611 mreexexd 17598 acsmapd 18513 isch3 30759 ssrelf 32109 eqrelrd2 32110 esumeq12dvaf 33325 bnj1366 34136 bnj571 34213 bnj964 34250 iota5f 34995 bj-hbext 35893 bj-nfext 35895 wl-mo3t 36746 wl-ax11-lem3 36754 cover2 36888 alrimii 37292 mpobi123f 37335 mptbi12f 37339 ss2iundf 42714 pm11.57 43452 pm11.59 43454 tratrb 43601 hbexg 43621 e2ebindALT 43994 mpteq1dfOLD 44239 mpteq12daOLD 44246 dvnmul 44959 stoweidlem34 45050 sge0fodjrnlem 45432 pimrecltpos 45724 pimrecltneg 45740 smfaddlem1 45779 smfresal 45804 smfinflem 45833 smfinfmpt 45835 ichnfim 46432 ovmpordxf 47104 setrec1lem4 47824 |
Copyright terms: Public domain | W3C validator |