![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2201. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
alrimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2189 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | alrimih 1827 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: sbimd 2238 sbbid 2239 nf5d 2281 axc4i 2316 19.12 2321 nfsbd 2522 mobid 2545 mo3 2559 eubid 2582 2moexv 2624 eupicka 2631 2moex 2637 2mo 2645 abbid 2804 nfcd 2892 nfabdwOLD 2928 ceqsalgALT 3509 ceqsexOLD 3525 vtocldf 3542 rspcdf 3600 elrab3t 3683 morex 3716 sbciedf 3822 csbiebt 3924 csbiedf 3925 ssrd 3988 eqrd 4002 invdisj 5133 zfrepclf 5295 eusv2nf 5394 ssopab2bw 5548 ssopab2b 5550 imadif 6633 eusvobj1 7402 ssoprab2b 7478 eqoprab2bw 7479 ovmpodxf 7558 axrepnd 10589 axunnd 10591 axpownd 10596 axregndlem1 10597 axacndlem1 10602 axacndlem2 10603 axacndlem3 10604 axacndlem4 10605 axacndlem5 10606 axacnd 10607 mreexexd 17592 acsmapd 18507 isch3 30525 ssrelf 31875 eqrelrd2 31876 esumeq12dvaf 33060 bnj1366 33871 bnj571 33948 bnj964 33985 iota5f 34724 bj-hbext 35636 bj-nfext 35638 wl-mo3t 36489 wl-ax11-lem3 36497 cover2 36631 alrimii 37035 mpobi123f 37078 mptbi12f 37082 ss2iundf 42458 pm11.57 43196 pm11.59 43198 tratrb 43345 hbexg 43365 e2ebindALT 43738 mpteq1dfOLD 43987 mpteq12daOLD 43994 dvnmul 44707 stoweidlem34 44798 sge0fodjrnlem 45180 pimrecltpos 45472 pimrecltneg 45488 smfaddlem1 45527 smfresal 45552 smfinflem 45581 smfinfmpt 45583 ichnfim 46180 ovmpordxf 47062 setrec1lem4 47783 |
Copyright terms: Public domain | W3C validator |