| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2208. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
| alrimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | alrimih 1824 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sbalex 2243 sbimd 2246 sbbid 2247 nf5d 2284 axc4i 2321 19.12 2326 nfsbd 2520 mobid 2543 mo3 2557 eubid 2580 2moexv 2620 eupicka 2627 2moex 2633 2mo 2641 abbid 2797 nfcd 2884 ceqsalgALT 3484 ceqsexOLD 3497 vtocldf 3526 rspcdf 3575 elrab3t 3658 morex 3690 sbciedf 3796 csbiebt 3891 csbiedf 3892 ssrd 3951 eqrd 3966 invdisj 5093 zfrepclf 5246 eusv2nf 5350 ssopab2bw 5507 ssopab2b 5509 imadif 6600 eusvobj1 7380 ssoprab2b 7458 eqoprab2bw 7459 ovmpodxf 7539 axrepnd 10547 axunnd 10549 axpownd 10554 axregndlem1 10555 axacndlem1 10560 axacndlem2 10561 axacndlem3 10562 axacndlem4 10563 axacndlem5 10564 axacnd 10565 mreexexd 17609 acsmapd 18513 isch3 31170 ssrelf 32543 eqrelrd2 32544 esumeq12dvaf 34021 bnj1366 34819 bnj571 34896 bnj964 34933 iota5f 35711 bj-hbext 36698 bj-nfext 36700 wl-mo3t 37564 wl-ax11-lem3 37575 cover2 37709 alrimii 38113 mpobi123f 38156 mptbi12f 38160 ss2iundf 43648 pm11.57 44378 pm11.59 44380 tratrb 44526 hbexg 44546 e2ebindALT 44918 modelaxreplem2 44969 permaxrep 44996 dvnmul 45941 stoweidlem34 46032 sge0fodjrnlem 46414 pimrecltpos 46706 pimrecltneg 46722 smfaddlem1 46761 smfresal 46786 smfinflem 46815 ichnfim 47465 ovmpordxf 48327 setrec1lem4 49679 |
| Copyright terms: Public domain | W3C validator |