Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2200. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
alrimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2188 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | alrimih 1826 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: sbimd 2237 sbbid 2238 nf5d 2281 axc4i 2316 19.12 2321 nfsbd 2526 mobid 2550 mo3 2564 eubid 2587 2moexv 2629 eupicka 2636 2moex 2642 2mo 2650 abbid 2809 nfcd 2895 nfabdwOLD 2931 ceqsalgALT 3465 ceqsex 3478 vtocldf 3493 rspcdf 3548 elrab3t 3623 morex 3654 sbciedf 3760 csbiebt 3862 csbiedf 3863 ssrd 3926 eqrd 3940 invdisj 5058 zfrepclf 5218 eusv2nf 5318 ssopab2bw 5460 ssopab2b 5462 imadif 6518 eusvobj1 7269 ssoprab2b 7344 eqoprab2bw 7345 ovmpodxf 7423 axrepnd 10350 axunnd 10352 axpownd 10357 axregndlem1 10358 axacndlem1 10363 axacndlem2 10364 axacndlem3 10365 axacndlem4 10366 axacndlem5 10367 axacnd 10368 mreexexd 17357 acsmapd 18272 isch3 29603 ssrelf 30955 eqrelrd2 30956 esumeq12dvaf 31999 bnj1366 32809 bnj571 32886 bnj964 32923 iota5f 33669 bj-hbext 34892 bj-nfext 34894 wl-mo3t 35731 wl-ax11-lem3 35738 cover2 35872 alrimii 36277 mpobi123f 36320 mptbi12f 36324 ss2iundf 41267 pm11.57 42007 pm11.59 42009 tratrb 42156 hbexg 42176 e2ebindALT 42549 mpteq1dfOLD 42780 mpteq12daOLD 42787 dvnmul 43484 stoweidlem34 43575 sge0fodjrnlem 43954 pimrecltpos 44245 pimrecltneg 44260 smfaddlem1 44298 smfresal 44322 smfinflem 44350 smfinfmpt 44352 ichnfim 44916 ovmpordxf 45674 setrec1lem4 46396 |
Copyright terms: Public domain | W3C validator |