| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2208. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
| alrimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | alrimih 1824 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sbalex 2243 sbimd 2246 sbbid 2247 nf5d 2284 axc4i 2321 19.12 2326 nfsbd 2520 mobid 2543 mo3 2557 eubid 2580 2moexv 2620 eupicka 2627 2moex 2633 2mo 2641 abbid 2797 nfcd 2884 ceqsalgALT 3473 ceqsexOLD 3486 vtocldf 3515 rspcdf 3564 elrab3t 3647 morex 3679 sbciedf 3785 csbiebt 3880 csbiedf 3881 ssrd 3940 eqrd 3955 invdisj 5078 zfrepclf 5230 eusv2nf 5334 ssopab2bw 5490 ssopab2b 5492 imadif 6566 eusvobj1 7342 ssoprab2b 7418 eqoprab2bw 7419 ovmpodxf 7499 axrepnd 10488 axunnd 10490 axpownd 10495 axregndlem1 10496 axacndlem1 10501 axacndlem2 10502 axacndlem3 10503 axacndlem4 10504 axacndlem5 10505 axacnd 10506 mreexexd 17554 acsmapd 18460 isch3 31185 ssrelf 32560 eqrelrd2 32561 esumeq12dvaf 34004 bnj1366 34802 bnj571 34879 bnj964 34916 iota5f 35707 bj-hbext 36694 bj-nfext 36696 wl-mo3t 37560 wl-ax11-lem3 37571 cover2 37705 alrimii 38109 mpobi123f 38152 mptbi12f 38156 ss2iundf 43642 pm11.57 44372 pm11.59 44374 tratrb 44520 hbexg 44540 e2ebindALT 44912 modelaxreplem2 44963 permaxrep 44990 dvnmul 45934 stoweidlem34 46025 sge0fodjrnlem 46407 pimrecltpos 46699 pimrecltneg 46715 smfaddlem1 46754 smfresal 46779 smfinflem 46808 ichnfim 47458 ovmpordxf 48333 setrec1lem4 49685 |
| Copyright terms: Public domain | W3C validator |