Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2205. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
alrimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2193 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | alrimih 1825 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1536 Ⅎwnf 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-ex 1782 df-nf 1786 |
This theorem is referenced by: sbimd 2243 sbbid 2244 nf5d 2288 axc4i 2330 19.12 2335 cbv2OLD 2416 nfsbd 2541 mobid 2568 mo3 2582 eubid 2607 2moexv 2648 eupicka 2655 2moex 2661 2mo 2669 abbid 2824 nfcd 2907 nfabdw 2940 ceqsalgALT 3446 ceqsex 3457 vtocldf 3472 rspcdf 3528 elrab3t 3601 morex 3633 sbciedf 3738 csbiebt 3834 csbiedf 3835 ssrd 3897 eqrd 3911 invdisj 5016 zfrepclf 5164 eusv2nf 5264 ssopab2bw 5404 ssopab2b 5406 imadif 6419 eusvobj1 7144 ssoprab2b 7217 eqoprab2bw 7218 ovmpodxf 7295 axrepnd 10054 axunnd 10056 axpownd 10061 axregndlem1 10062 axacndlem1 10067 axacndlem2 10068 axacndlem3 10069 axacndlem4 10070 axacndlem5 10071 axacnd 10072 mreexexd 16977 acsmapd 17854 isch3 29123 ssrelf 30477 eqrelrd2 30478 esumeq12dvaf 31518 bnj1366 32329 bnj571 32406 bnj964 32443 iota5f 33187 bj-hbext 34438 bj-nfext 34440 wl-mo3t 35257 wl-ax11-lem3 35264 cover2 35432 alrimii 35837 mpobi123f 35880 mptbi12f 35884 ss2iundf 40733 pm11.57 41466 pm11.59 41468 tratrb 41615 hbexg 41635 e2ebindALT 42008 mpteq1df 42240 mpteq12da 42247 dvnmul 42951 stoweidlem34 43042 sge0fodjrnlem 43421 pimrecltpos 43710 pimrecltneg 43724 smfaddlem1 43762 smfresal 43786 smfsupmpt 43812 smfinflem 43814 smfinfmpt 43816 ichnfim 44349 ovmpordxf 45107 setrec1lem4 45611 |
Copyright terms: Public domain | W3C validator |