Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2203. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
alrimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2191 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | alrimih 1827 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: sbimd 2240 sbbid 2241 nf5d 2284 axc4i 2320 19.12 2325 nfsbd 2526 mobid 2550 mo3 2564 eubid 2587 2moexv 2629 eupicka 2636 2moex 2642 2mo 2650 abbid 2810 nfcd 2894 nfabdwOLD 2930 ceqsalgALT 3455 ceqsex 3468 vtocldf 3483 rspcdf 3538 elrab3t 3616 morex 3649 sbciedf 3755 csbiebt 3858 csbiedf 3859 ssrd 3922 eqrd 3936 invdisj 5054 zfrepclf 5213 eusv2nf 5313 ssopab2bw 5453 ssopab2b 5455 imadif 6502 eusvobj1 7249 ssoprab2b 7322 eqoprab2bw 7323 ovmpodxf 7401 axrepnd 10281 axunnd 10283 axpownd 10288 axregndlem1 10289 axacndlem1 10294 axacndlem2 10295 axacndlem3 10296 axacndlem4 10297 axacndlem5 10298 axacnd 10299 mreexexd 17274 acsmapd 18187 isch3 29504 ssrelf 30856 eqrelrd2 30857 esumeq12dvaf 31899 bnj1366 32709 bnj571 32786 bnj964 32823 iota5f 33571 bj-hbext 34819 bj-nfext 34821 wl-mo3t 35658 wl-ax11-lem3 35665 cover2 35799 alrimii 36204 mpobi123f 36247 mptbi12f 36251 ss2iundf 41156 pm11.57 41896 pm11.59 41898 tratrb 42045 hbexg 42065 e2ebindALT 42438 mpteq1dfOLD 42669 mpteq12daOLD 42676 dvnmul 43374 stoweidlem34 43465 sge0fodjrnlem 43844 pimrecltpos 44133 pimrecltneg 44147 smfaddlem1 44185 smfresal 44209 smfinflem 44237 smfinfmpt 44239 ichnfim 44804 ovmpordxf 45562 setrec1lem4 46282 |
Copyright terms: Public domain | W3C validator |