| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2210. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
| alrimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2198 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | alrimih 1825 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: sbalex 2245 sbimd 2248 sbbid 2249 nf5d 2286 axc4i 2323 19.12 2328 nfsbd 2522 mobid 2545 mo3 2559 eubid 2582 2moexv 2622 eupicka 2629 2moex 2635 2mo 2643 abbid 2799 nfcd 2887 ceqsalgALT 3473 vtocldf 3513 rspcdf 3559 elrab3t 3641 morex 3673 sbciedf 3779 csbiebt 3874 csbiedf 3875 ssrd 3934 eqrd 3949 invdisj 5075 zfrepclf 5227 eusv2nf 5331 ssopab2bw 5485 ssopab2b 5487 imadif 6565 eusvobj1 7339 ssoprab2b 7415 eqoprab2bw 7416 ovmpodxf 7496 axrepnd 10485 axunnd 10487 axpownd 10492 axregndlem1 10493 axacndlem1 10498 axacndlem2 10499 axacndlem3 10500 axacndlem4 10501 axacndlem5 10502 axacnd 10503 mreexexd 17554 acsmapd 18460 isch3 31221 ssrelf 32598 eqrelrd2 32599 esumeq12dvaf 34044 bnj1366 34841 bnj571 34918 bnj964 34955 iota5f 35768 bj-hbext 36754 bj-nfext 36756 wl-mo3t 37620 wl-ax11-lem3 37631 cover2 37765 alrimii 38169 mpobi123f 38212 mptbi12f 38216 ss2iundf 43762 pm11.57 44492 pm11.59 44494 tratrb 44639 hbexg 44659 e2ebindALT 45031 modelaxreplem2 45082 permaxrep 45109 dvnmul 46051 stoweidlem34 46142 sge0fodjrnlem 46524 pimrecltpos 46816 pimrecltneg 46832 smfaddlem1 46871 smfresal 46896 smfinflem 46925 ichnfim 47574 ovmpordxf 48449 setrec1lem4 49801 |
| Copyright terms: Public domain | W3C validator |