![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2208. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
alrimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | alrimih 1822 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 |
This theorem is referenced by: sbalex 2243 sbimd 2246 sbbid 2247 nf5d 2288 axc4i 2326 19.12 2331 nfsbd 2530 mobid 2553 mo3 2567 eubid 2590 2moexv 2630 eupicka 2637 2moex 2643 2mo 2651 abbid 2813 nfcd 2901 nfabdwOLD 2933 ceqsalgALT 3526 ceqsexOLD 3541 vtocldf 3572 rspcdf 3622 elrab3t 3707 morex 3741 sbciedf 3849 csbiebt 3951 csbiedf 3952 ssrd 4013 eqrd 4028 invdisj 5152 zfrepclf 5312 eusv2nf 5413 ssopab2bw 5566 ssopab2b 5568 imadif 6662 eusvobj1 7441 ssoprab2b 7519 eqoprab2bw 7520 ovmpodxf 7600 axrepnd 10663 axunnd 10665 axpownd 10670 axregndlem1 10671 axacndlem1 10676 axacndlem2 10677 axacndlem3 10678 axacndlem4 10679 axacndlem5 10680 axacnd 10681 mreexexd 17706 acsmapd 18624 isch3 31273 ssrelf 32637 eqrelrd2 32638 esumeq12dvaf 33995 bnj1366 34805 bnj571 34882 bnj964 34919 iota5f 35686 bj-hbext 36676 bj-nfext 36678 wl-mo3t 37530 wl-ax11-lem3 37541 cover2 37675 alrimii 38079 mpobi123f 38122 mptbi12f 38126 ss2iundf 43621 pm11.57 44358 pm11.59 44360 tratrb 44507 hbexg 44527 e2ebindALT 44900 mpteq1dfOLD 45144 mpteq12daOLD 45151 dvnmul 45864 stoweidlem34 45955 sge0fodjrnlem 46337 pimrecltpos 46629 pimrecltneg 46645 smfaddlem1 46684 smfresal 46709 smfinflem 46738 smfinfmpt 46740 ichnfim 47338 ovmpordxf 48063 setrec1lem4 48782 |
Copyright terms: Public domain | W3C validator |