| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2208. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
| alrimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | alrimih 1824 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sbalex 2243 sbimd 2246 sbbid 2247 nf5d 2285 axc4i 2323 19.12 2328 nfsbd 2527 mobid 2550 mo3 2564 eubid 2587 2moexv 2627 eupicka 2634 2moex 2640 2mo 2648 abbid 2804 nfcd 2892 ceqsalgALT 3502 ceqsexOLD 3515 vtocldf 3544 rspcdf 3593 elrab3t 3675 morex 3707 sbciedf 3813 csbiebt 3908 csbiedf 3909 ssrd 3968 eqrd 3983 invdisj 5110 zfrepclf 5266 eusv2nf 5370 ssopab2bw 5527 ssopab2b 5529 imadif 6625 eusvobj1 7403 ssoprab2b 7481 eqoprab2bw 7482 ovmpodxf 7562 axrepnd 10613 axunnd 10615 axpownd 10620 axregndlem1 10621 axacndlem1 10626 axacndlem2 10627 axacndlem3 10628 axacndlem4 10629 axacndlem5 10630 axacnd 10631 mreexexd 17665 acsmapd 18569 isch3 31227 ssrelf 32600 eqrelrd2 32601 esumeq12dvaf 34067 bnj1366 34865 bnj571 34942 bnj964 34979 iota5f 35746 bj-hbext 36733 bj-nfext 36735 wl-mo3t 37599 wl-ax11-lem3 37610 cover2 37744 alrimii 38148 mpobi123f 38191 mptbi12f 38195 ss2iundf 43658 pm11.57 44388 pm11.59 44390 tratrb 44536 hbexg 44556 e2ebindALT 44928 modelaxreplem2 44979 permaxrep 45006 dvnmul 45952 stoweidlem34 46043 sge0fodjrnlem 46425 pimrecltpos 46717 pimrecltneg 46733 smfaddlem1 46772 smfresal 46797 smfinflem 46826 ichnfim 47458 ovmpordxf 48294 setrec1lem4 49534 |
| Copyright terms: Public domain | W3C validator |