| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2206. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
| alrimi.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2194 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | alrimih 1823 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: sbalex 2241 sbimd 2244 sbbid 2245 nf5d 2283 axc4i 2321 19.12 2326 nfsbd 2525 mobid 2548 mo3 2562 eubid 2585 2moexv 2625 eupicka 2632 2moex 2638 2mo 2646 abbid 2802 nfcd 2890 ceqsalgALT 3495 ceqsexOLD 3508 vtocldf 3537 rspcdf 3586 elrab3t 3668 morex 3700 sbciedf 3806 csbiebt 3901 csbiedf 3902 ssrd 3961 eqrd 3976 invdisj 5102 zfrepclf 5258 eusv2nf 5362 ssopab2bw 5519 ssopab2b 5521 imadif 6616 eusvobj1 7392 ssoprab2b 7470 eqoprab2bw 7471 ovmpodxf 7551 axrepnd 10600 axunnd 10602 axpownd 10607 axregndlem1 10608 axacndlem1 10613 axacndlem2 10614 axacndlem3 10615 axacndlem4 10616 axacndlem5 10617 axacnd 10618 mreexexd 17645 acsmapd 18549 isch3 31154 ssrelf 32528 eqrelrd2 32529 esumeq12dvaf 33970 bnj1366 34781 bnj571 34858 bnj964 34895 iota5f 35662 bj-hbext 36649 bj-nfext 36651 wl-mo3t 37515 wl-ax11-lem3 37526 cover2 37660 alrimii 38064 mpobi123f 38107 mptbi12f 38111 ss2iundf 43608 pm11.57 44339 pm11.59 44341 tratrb 44487 hbexg 44507 e2ebindALT 44880 modelaxreplem2 44931 permaxrep 44958 dvnmul 45902 stoweidlem34 45993 sge0fodjrnlem 46375 pimrecltpos 46667 pimrecltneg 46683 smfaddlem1 46722 smfresal 46747 smfinflem 46776 ichnfim 47396 ovmpordxf 48200 setrec1lem4 49274 |
| Copyright terms: Public domain | W3C validator |