Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ax12ssb | Structured version Visualization version GIF version |
Description: Axiom bj-ax12 34385 expressed using substitution. (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ax12ssb | ⊢ [𝑡 / 𝑥](𝜑 → [𝑡 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ax12 34385 | . . 3 ⊢ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) | |
2 | sb6 2091 | . . . . . 6 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) | |
3 | 2 | imbi2i 340 | . . . . 5 ⊢ ((𝜑 → [𝑡 / 𝑥]𝜑) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
4 | 3 | imbi2i 340 | . . . 4 ⊢ ((𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) ↔ (𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)))) |
5 | 4 | albii 1822 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)))) |
6 | 1, 5 | mpbir 234 | . 2 ⊢ ∀𝑥(𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) |
7 | sb6 2091 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → [𝑡 / 𝑥]𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑))) | |
8 | 6, 7 | mpbir 234 | 1 ⊢ [𝑡 / 𝑥](𝜑 → [𝑡 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-12 2176 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-sb 2071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |