| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ax12ssb | Structured version Visualization version GIF version | ||
| Description: Axiom bj-ax12 36617 expressed using substitution. (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-ax12ssb | ⊢ [𝑡 / 𝑥](𝜑 → [𝑡 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-ax12 36617 | . . 3 ⊢ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) | |
| 2 | sb6 2084 | . . . . . 6 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) | |
| 3 | 2 | imbi2i 336 | . . . . 5 ⊢ ((𝜑 → [𝑡 / 𝑥]𝜑) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 4 | 3 | imbi2i 336 | . . . 4 ⊢ ((𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) ↔ (𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)))) |
| 5 | 4 | albii 1818 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)))) |
| 6 | 1, 5 | mpbir 231 | . 2 ⊢ ∀𝑥(𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) |
| 7 | sb6 2084 | . 2 ⊢ ([𝑡 / 𝑥](𝜑 → [𝑡 / 𝑥]𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑))) | |
| 8 | 6, 7 | mpbir 231 | 1 ⊢ [𝑡 / 𝑥](𝜑 → [𝑡 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |