Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax12ssb Structured version   Visualization version   GIF version

Theorem bj-ax12ssb 34766
Description: Axiom bj-ax12 34765 expressed using substitution. (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ax12ssb [𝑡 / 𝑥](𝜑 → [𝑡 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑡)

Proof of Theorem bj-ax12ssb
StepHypRef Expression
1 bj-ax12 34765 . . 3 𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
2 sb6 2089 . . . . . 6 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
32imbi2i 335 . . . . 5 ((𝜑 → [𝑡 / 𝑥]𝜑) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
43imbi2i 335 . . . 4 ((𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) ↔ (𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))))
54albii 1823 . . 3 (∀𝑥(𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))))
61, 5mpbir 230 . 2 𝑥(𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑))
7 sb6 2089 . 2 ([𝑡 / 𝑥](𝜑 → [𝑡 / 𝑥]𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)))
86, 7mpbir 230 1 [𝑡 / 𝑥](𝜑 → [𝑡 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator