| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-19.41al | Structured version Visualization version GIF version | ||
| Description: Special case of 19.41 2234 proved from core axioms, ax-10 2140 (modal5), and hba1 2292 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-19.41al | ⊢ (∃𝑥(𝜑 ∧ ∀𝑥𝜓) ↔ (∃𝑥𝜑 ∧ ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1885 | . . 3 ⊢ (∃𝑥(𝜑 ∧ ∀𝑥𝜓) → (∃𝑥𝜑 ∧ ∃𝑥∀𝑥𝜓)) | |
| 2 | hbe1a 2143 | . . . 4 ⊢ (∃𝑥∀𝑥𝜓 → ∀𝑥𝜓) | |
| 3 | 2 | anim2i 617 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥∀𝑥𝜓) → (∃𝑥𝜑 ∧ ∀𝑥𝜓)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∀𝑥𝜓) → (∃𝑥𝜑 ∧ ∀𝑥𝜓)) |
| 5 | hba1 2292 | . . . 4 ⊢ (∀𝑥𝜓 → ∀𝑥∀𝑥𝜓) | |
| 6 | 5 | anim2i 617 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → (∃𝑥𝜑 ∧ ∀𝑥∀𝑥𝜓)) |
| 7 | 19.29r 1873 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥∀𝑥𝜓) → ∃𝑥(𝜑 ∧ ∀𝑥𝜓)) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ ∀𝑥𝜓)) |
| 9 | 4, 8 | impbii 209 | 1 ⊢ (∃𝑥(𝜑 ∧ ∀𝑥𝜓) ↔ (∃𝑥𝜑 ∧ ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: bj-equsexval 36636 |
| Copyright terms: Public domain | W3C validator |