Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax12w Structured version   Visualization version   GIF version

Theorem bj-ax12w 34404
 Description: The general statement that ax12w 2134 proves. (Contributed by BJ, 20-Mar-2020.)
Hypotheses
Ref Expression
bj-ax12w.1 (𝜑 → (𝜓𝜒))
bj-ax12w.2 (𝑦 = 𝑧 → (𝜓𝜃))
Assertion
Ref Expression
bj-ax12w (𝜑 → (∀𝑦𝜓 → ∀𝑥(𝜑𝜓)))
Distinct variable groups:   𝜒,𝑥   𝜃,𝑦   𝜓,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝜒(𝑦,𝑧)   𝜃(𝑥,𝑧)

Proof of Theorem bj-ax12w
StepHypRef Expression
1 bj-ax12w.2 . . 3 (𝑦 = 𝑧 → (𝜓𝜃))
21spw 2041 . 2 (∀𝑦𝜓𝜓)
3 bj-ax12w.1 . . 3 (𝜑 → (𝜓𝜒))
43bj-ax12wlem 34371 . 2 (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
52, 4syl5 34 1 (𝜑 → (∀𝑦𝜓 → ∀𝑥(𝜑𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  ∀wal 1536 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator