![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ax89 | Structured version Visualization version GIF version |
Description: A theorem which could be used as sole axiom for the non-logical predicate instead of ax-8 2100 and ax-9 2108. Indeed, it is implied over propositional calculus by the conjunction of ax-8 2100 and ax-9 2108, as proved here. In the other direction, one can prove ax-8 2100 (respectively ax-9 2108) from bj-ax89 36187 by using mpan2 689 (respectively mpan 688) and equid 2007. TODO: move to main part. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bj-ax89 | ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑡)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax8 2104 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
2 | ax9 2112 | . 2 ⊢ (𝑧 = 𝑡 → (𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑡)) | |
3 | 1, 2 | sylan9 506 | 1 ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑡)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |