Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax89 Structured version   Visualization version   GIF version

Theorem bj-ax89 34515
Description: A theorem which could be used as sole axiom for the non-logical predicate instead of ax-8 2116 and ax-9 2124. Indeed, it is implied over propositional calculus by the conjunction of ax-8 2116 and ax-9 2124, as proved here. In the other direction, one can prove ax-8 2116 (respectively ax-9 2124) from bj-ax89 34515 by using mpan2 691 (respectively mpan 690) and equid 2024. TODO: move to main part. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bj-ax89 ((𝑥 = 𝑦𝑧 = 𝑡) → (𝑥𝑧𝑦𝑡))

Proof of Theorem bj-ax89
StepHypRef Expression
1 ax8 2120 . 2 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
2 ax9 2128 . 2 (𝑧 = 𝑡 → (𝑦𝑧𝑦𝑡))
31, 2sylan9 511 1 ((𝑥 = 𝑦𝑧 = 𝑡) → (𝑥𝑧𝑦𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator