| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbvexw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. This is to cbvexvw 2036 what cbvalw 2034 is to cbvalvw 2035. (Contributed by BJ, 17-Mar-2020.) |
| Ref | Expression |
|---|---|
| bj-cbvexw.1 | ⊢ (∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) |
| bj-cbvexw.2 | ⊢ (𝜑 → ∀𝑦𝜑) |
| bj-cbvexw.3 | ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑥𝜑) |
| bj-cbvexw.4 | ⊢ (𝜓 → ∀𝑥𝜓) |
| bj-cbvexw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| bj-cbvexw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-cbvexw.1 | . . 3 ⊢ (∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) | |
| 2 | bj-cbvexw.2 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 3 | bj-cbvexw.5 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | equcoms 2019 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
| 5 | 4 | biimpd 229 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 → 𝜓)) |
| 6 | 1, 2, 5 | bj-cbvexiw 36672 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) |
| 7 | bj-cbvexw.3 | . . 3 ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑥𝜑) | |
| 8 | bj-cbvexw.4 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 9 | 3 | biimprd 248 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
| 10 | 7, 8, 9 | bj-cbvexiw 36672 | . 2 ⊢ (∃𝑦𝜓 → ∃𝑥𝜑) |
| 11 | 6, 10 | impbii 209 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |