Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbvexw | Structured version Visualization version GIF version |
Description: Change bound variable. This is to cbvexvw 2041 what cbvalw 2039 is to cbvalvw 2040. (Contributed by BJ, 17-Mar-2020.) |
Ref | Expression |
---|---|
bj-cbvexw.1 | ⊢ (∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) |
bj-cbvexw.2 | ⊢ (𝜑 → ∀𝑦𝜑) |
bj-cbvexw.3 | ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑥𝜑) |
bj-cbvexw.4 | ⊢ (𝜓 → ∀𝑥𝜓) |
bj-cbvexw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
bj-cbvexw | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-cbvexw.1 | . . 3 ⊢ (∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) | |
2 | bj-cbvexw.2 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
3 | bj-cbvexw.5 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 3 | equcoms 2024 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
5 | 4 | biimpd 228 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 → 𝜓)) |
6 | 1, 2, 5 | bj-cbvexiw 34779 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) |
7 | bj-cbvexw.3 | . . 3 ⊢ (∃𝑦∃𝑥𝜑 → ∃𝑥𝜑) | |
8 | bj-cbvexw.4 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
9 | 3 | biimprd 247 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
10 | 7, 8, 9 | bj-cbvexiw 34779 | . 2 ⊢ (∃𝑦𝜓 → ∃𝑥𝜑) |
11 | 6, 10 | impbii 208 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |