Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bija | Structured version Visualization version GIF version |
Description: Combine antecedents into a single biconditional. This inference, reminiscent of ja 186, is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im 262 and pm5.21im 375). (Contributed by Wolf Lammen, 13-May-2013.) |
Ref | Expression |
---|---|
bija.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
bija.2 | ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
bija | ⊢ ((𝜑 ↔ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpr 219 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
2 | bija.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syli 39 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜒)) |
4 | biimp 214 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
5 | 4 | con3d 152 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
6 | bija.2 | . . 3 ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) | |
7 | 5, 6 | syli 39 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜓 → 𝜒)) |
8 | 3, 7 | pm2.61d 179 | 1 ⊢ ((𝜑 ↔ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: impimprbi 826 nanass 1505 equvel 2456 ab0w 4307 epnsym 9367 2lgsoddprm 26564 bj-bibibi 34768 wl-aleq 35694 wl-nfeqfb 35695 rp-fakeimass 41119 |
Copyright terms: Public domain | W3C validator |