Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bija Structured version   Visualization version   GIF version

Theorem bija 385
 Description: Combine antecedents into a single biconditional. This inference, reminiscent of ja 189, is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im 266 and pm5.21im 378). (Contributed by Wolf Lammen, 13-May-2013.)
Hypotheses
Ref Expression
bija.1 (𝜑 → (𝜓𝜒))
bija.2 𝜑 → (¬ 𝜓𝜒))
Assertion
Ref Expression
bija ((𝜑𝜓) → 𝜒)

Proof of Theorem bija
StepHypRef Expression
1 biimpr 223 . . 3 ((𝜑𝜓) → (𝜓𝜑))
2 bija.1 . . 3 (𝜑 → (𝜓𝜒))
31, 2syli 39 . 2 ((𝜑𝜓) → (𝜓𝜒))
4 biimp 218 . . . 4 ((𝜑𝜓) → (𝜑𝜓))
54con3d 155 . . 3 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
6 bija.2 . . 3 𝜑 → (¬ 𝜓𝜒))
75, 6syli 39 . 2 ((𝜑𝜓) → (¬ 𝜓𝜒))
83, 7pm2.61d 182 1 ((𝜑𝜓) → 𝜒)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210 This theorem is referenced by:  impimprbi  827  nanass  1501  equvel  2468  epnsym  9059  2lgsoddprm  26010  bj-bibibi  34052  wl-aleq  34959  wl-nfeqfb  34960  rp-fakeimass  40263
 Copyright terms: Public domain W3C validator