|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > bija | Structured version Visualization version GIF version | ||
| Description: Combine antecedents into a single biconditional. This inference, reminiscent of ja 186, is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im 263 and pm5.21im 374). (Contributed by Wolf Lammen, 13-May-2013.) | 
| Ref | Expression | 
|---|---|
| bija.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| bija.2 | ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| bija | ⊢ ((𝜑 ↔ 𝜓) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimpr 220 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 2 | bija.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syli 39 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜒)) | 
| 4 | biimp 215 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 5 | 4 | con3d 152 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | 
| 6 | bija.2 | . . 3 ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) | |
| 7 | 5, 6 | syli 39 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜓 → 𝜒)) | 
| 8 | 3, 7 | pm2.61d 179 | 1 ⊢ ((𝜑 ↔ 𝜓) → 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: impimprbi 828 nanass 1509 equvel 2460 ab0w 4378 epnsym 9650 2lgsoddprm 27461 bj-bibibi 36588 wl-aleq 37537 wl-nfeqfb 37538 rp-fakeimass 43530 | 
| Copyright terms: Public domain | W3C validator |