| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bija | Structured version Visualization version GIF version | ||
| Description: Combine antecedents into a single biconditional. This inference, reminiscent of ja 186, is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im 263 and pm5.21im 374). (Contributed by Wolf Lammen, 13-May-2013.) |
| Ref | Expression |
|---|---|
| bija.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| bija.2 | ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| bija | ⊢ ((𝜑 ↔ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpr 220 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 2 | bija.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syli 39 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜒)) |
| 4 | biimp 215 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 5 | 4 | con3d 152 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
| 6 | bija.2 | . . 3 ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) | |
| 7 | 5, 6 | syli 39 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜓 → 𝜒)) |
| 8 | 3, 7 | pm2.61d 179 | 1 ⊢ ((𝜑 ↔ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: impimprbi 828 nanass 1510 equvel 2461 ab0w 4359 epnsym 9628 2lgsoddprm 27384 bj-bibibi 36609 wl-aleq 37558 wl-nfeqfb 37559 rp-fakeimass 43503 |
| Copyright terms: Public domain | W3C validator |