Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imn3ani Structured version   Visualization version   GIF version

Theorem bj-imn3ani 34769
Description: Duplication of bnj1224 32781. Three-fold version of imnani 401. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by BJ, 22-Oct-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-imn3ani.1 ¬ (𝜑𝜓𝜒)
Assertion
Ref Expression
bj-imn3ani ((𝜑𝜓) → ¬ 𝜒)

Proof of Theorem bj-imn3ani
StepHypRef Expression
1 bj-imn3ani.1 . . 3 ¬ (𝜑𝜓𝜒)
2 df-3an 1088 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
31, 2mtbi 322 . 2 ¬ ((𝜑𝜓) ∧ 𝜒)
43imnani 401 1 ((𝜑𝜓) → ¬ 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  bj-inftyexpidisj  35381
  Copyright terms: Public domain W3C validator