Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imn3ani | Structured version Visualization version GIF version |
Description: Duplication of bnj1224 32681. Three-fold version of imnani 400. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by BJ, 22-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-imn3ani.1 | ⊢ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
bj-imn3ani | ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imn3ani.1 | . . 3 ⊢ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | df-3an 1087 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
3 | 1, 2 | mtbi 321 | . 2 ⊢ ¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) |
4 | 3 | imnani 400 | 1 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: bj-inftyexpidisj 35308 |
Copyright terms: Public domain | W3C validator |