Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bianir | Structured version Visualization version GIF version |
Description: A closed form of mpbir 230, analogous to pm2.27 42 (assertion). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Roger Witte, 17-Aug-2020.) |
Ref | Expression |
---|---|
bianir | ⊢ ((𝜑 ∧ (𝜓 ↔ 𝜑)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpr 219 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (𝜑 → 𝜓)) | |
2 | 1 | impcom 408 | 1 ⊢ ((𝜑 ∧ (𝜓 ↔ 𝜑)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: fiun 7785 suppimacnv 7990 lgsqrmodndvds 26501 bnj970 32927 bnj1001 32939 bj-bibibi 34768 isomuspgrlem2b 45281 |
Copyright terms: Public domain | W3C validator |