| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
| Ref | Expression |
|---|---|
| con2bid.1 | ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con2bid | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2bid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) | |
| 2 | con2bi 353 | . 2 ⊢ ((𝜒 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜒)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con1bid 355 sotric 5569 sotrieq 5570 sotr2 5573 isso2i 5576 sotr3 5580 sotri2 6090 sotri3 6091 somin1 6094 somincom 6095 ordtri2 6355 ordtr3 6366 ordintdif 6371 ord0eln0 6376 soisoi 7285 weniso 7311 ordunisuc2 7800 limsssuc 7806 nlimon 7807 tfrlem15 8337 oawordeulem 8495 nnawordex 8578 fimaxg 9210 suplub2 9388 fiming 9427 wemapsolem 9479 cantnflem1 9618 rankval3b 9755 cardsdomel 9903 harsdom 9924 isfin1-2 10314 fin1a2lem7 10335 suplem2pr 10982 xrltnle 11217 ltnle 11229 leloe 11236 xrlttri 13075 xrleloe 13080 xrrebnd 13104 supxrbnd2 13258 supxrbnd 13264 om2uzf1oi 13894 rabssnn0fi 13927 cnpart 15182 bits0e 16375 bitsmod 16382 bitsinv1lem 16387 sadcaddlem 16403 trfil2 23750 xrsxmet 24674 metdsge 24714 ovolunlem1a 25373 ovolunlem1 25374 itg2seq 25619 noetasuplem4 27624 noetainflem4 27628 sltnle 27641 sleloe 27642 sgnneg 32731 toslublem 32871 tosglblem 32873 isarchi2 33112 gsumesum 34022 elfuns 35876 finminlem 36279 bj-bibibi 36547 itg2addnclem 37638 heiborlem10 37787 aks4d1p8 42048 cantnfresb 43286 naddwordnexlem4 43363 ontric3g 43484 or3or 43985 ntrclselnel2 44020 clsneifv3 44072 islininds2 48446 resinsnlem 48832 |
| Copyright terms: Public domain | W3C validator |