| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
| Ref | Expression |
|---|---|
| con2bid.1 | ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con2bid | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2bid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) | |
| 2 | con2bi 353 | . 2 ⊢ ((𝜒 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜒)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con1bid 355 sotric 5569 sotrieq 5570 sotr2 5573 isso2i 5576 sotr3 5580 sotri2 6090 sotri3 6091 somin1 6094 somincom 6095 ordtri2 6355 ordtr3 6366 ordintdif 6371 ord0eln0 6376 soisoi 7285 weniso 7311 ordunisuc2 7800 limsssuc 7806 nlimon 7807 tfrlem15 8337 oawordeulem 8495 nnawordex 8578 fimaxg 9210 suplub2 9388 fiming 9427 wemapsolem 9479 cantnflem1 9618 rankval3b 9755 cardsdomel 9903 harsdom 9924 isfin1-2 10314 fin1a2lem7 10335 suplem2pr 10982 xrltnle 11217 ltnle 11229 leloe 11236 xrlttri 13075 xrleloe 13080 xrrebnd 13104 supxrbnd2 13258 supxrbnd 13264 om2uzf1oi 13894 rabssnn0fi 13927 cnpart 15182 bits0e 16375 bitsmod 16382 bitsinv1lem 16387 sadcaddlem 16403 trfil2 23807 xrsxmet 24731 metdsge 24771 ovolunlem1a 25430 ovolunlem1 25431 itg2seq 25676 noetasuplem4 27681 noetainflem4 27685 sltnle 27698 sleloe 27699 sgnneg 32808 toslublem 32944 tosglblem 32946 isarchi2 33154 gsumesum 34042 elfuns 35896 finminlem 36299 bj-bibibi 36567 itg2addnclem 37658 heiborlem10 37807 aks4d1p8 42068 cantnfresb 43306 naddwordnexlem4 43383 ontric3g 43504 or3or 44005 ntrclselnel2 44040 clsneifv3 44092 islininds2 48466 resinsnlem 48852 |
| Copyright terms: Public domain | W3C validator |