| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
| Ref | Expression |
|---|---|
| con2bid.1 | ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con2bid | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2bid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) | |
| 2 | con2bi 353 | . 2 ⊢ ((𝜒 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜒)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con1bid 355 sotric 5557 sotrieq 5558 sotr2 5561 isso2i 5564 sotr3 5568 sotri2 6078 sotri3 6079 somin1 6082 somincom 6083 ordtri2 6342 ordtr3 6353 ordintdif 6358 ord0eln0 6363 soisoi 7265 weniso 7291 ordunisuc2 7777 limsssuc 7783 nlimon 7784 tfrlem15 8314 oawordeulem 8472 nnawordex 8555 fimaxg 9176 suplub2 9351 fiming 9390 wemapsolem 9442 cantnflem1 9585 rankval3b 9722 cardsdomel 9870 harsdom 9891 isfin1-2 10279 fin1a2lem7 10300 suplem2pr 10947 xrltnle 11182 ltnle 11195 leloe 11202 xrlttri 13041 xrleloe 13046 xrrebnd 13070 supxrbnd2 13224 supxrbnd 13230 om2uzf1oi 13860 rabssnn0fi 13893 cnpart 15147 bits0e 16340 bitsmod 16347 bitsinv1lem 16352 sadcaddlem 16368 trfil2 23772 xrsxmet 24696 metdsge 24736 ovolunlem1a 25395 ovolunlem1 25396 itg2seq 25641 noetasuplem4 27646 noetainflem4 27650 sltnle 27663 sleloe 27664 sgnneg 32778 toslublem 32914 tosglblem 32916 isarchi2 33127 gsumesum 34026 elfuns 35889 finminlem 36292 bj-bibibi 36560 itg2addnclem 37651 heiborlem10 37800 aks4d1p8 42060 cantnfresb 43297 naddwordnexlem4 43374 ontric3g 43495 or3or 43996 ntrclselnel2 44031 clsneifv3 44083 islininds2 48469 resinsnlem 48855 |
| Copyright terms: Public domain | W3C validator |