Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con2bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
Ref | Expression |
---|---|
con2bid.1 | ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
Ref | Expression |
---|---|
con2bid | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2bid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) | |
2 | con2bi 354 | . 2 ⊢ ((𝜒 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜒)) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: con1bid 356 sotric 5532 sotrieq 5533 sotr2 5536 isso2i 5539 sotri2 6039 sotri3 6040 somin1 6043 somincom 6044 ordtri2 6305 ordtr3 6315 ordintdif 6319 ord0eln0 6324 soisoi 7208 weniso 7234 ordunisuc2 7700 limsssuc 7706 nlimon 7707 tfrlem15 8232 oawordeulem 8394 nnawordex 8477 onomeneqOLD 9021 fimaxg 9070 suplub2 9229 fiming 9266 wemapsolem 9318 cantnflem1 9456 rankval3b 9593 cardsdomel 9741 harsdom 9762 isfin1-2 10150 fin1a2lem7 10171 suplem2pr 10818 xrltnle 11051 ltnle 11063 leloe 11070 xrlttri 12882 xrleloe 12887 xrrebnd 12911 supxrbnd2 13065 supxrbnd 13071 om2uzf1oi 13682 rabssnn0fi 13715 cnpart 14960 bits0e 16145 bitsmod 16152 bitsinv1lem 16157 sadcaddlem 16173 trfil2 23047 xrsxmet 23981 metdsge 24021 ovolunlem1a 24669 ovolunlem1 24670 itg2seq 24916 toslublem 31259 tosglblem 31261 isarchi2 31448 gsumesum 32036 sgnneg 32516 sotr3 33742 noetasuplem4 33948 noetainflem4 33952 sltnle 33965 sleloe 33966 elfuns 34226 finminlem 34516 bj-bibibi 34777 itg2addnclem 35837 heiborlem10 35987 aks4d1p8 40102 ontric3g 41136 or3or 41638 ntrclselnel2 41675 clsneifv3 41727 islininds2 45836 |
Copyright terms: Public domain | W3C validator |