![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con2bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
Ref | Expression |
---|---|
con2bid.1 | ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
Ref | Expression |
---|---|
con2bid | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2bid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) | |
2 | con2bi 353 | . 2 ⊢ ((𝜒 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜒)) | |
3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: con1bid 355 sotric 5637 sotrieq 5638 sotr2 5641 isso2i 5644 sotr3 5648 sotri2 6161 sotri3 6162 somin1 6165 somincom 6166 ordtri2 6430 ordtr3 6440 ordintdif 6445 ord0eln0 6450 soisoi 7364 weniso 7390 ordunisuc2 7881 limsssuc 7887 nlimon 7888 tfrlem15 8448 oawordeulem 8610 nnawordex 8693 onomeneqOLD 9292 fimaxg 9351 suplub2 9530 fiming 9567 wemapsolem 9619 cantnflem1 9758 rankval3b 9895 cardsdomel 10043 harsdom 10064 isfin1-2 10454 fin1a2lem7 10475 suplem2pr 11122 xrltnle 11357 ltnle 11369 leloe 11376 xrlttri 13201 xrleloe 13206 xrrebnd 13230 supxrbnd2 13384 supxrbnd 13390 om2uzf1oi 14004 rabssnn0fi 14037 cnpart 15289 bits0e 16475 bitsmod 16482 bitsinv1lem 16487 sadcaddlem 16503 trfil2 23916 xrsxmet 24850 metdsge 24890 ovolunlem1a 25550 ovolunlem1 25551 itg2seq 25797 noetasuplem4 27799 noetainflem4 27803 sltnle 27816 sleloe 27817 toslublem 32945 tosglblem 32947 isarchi2 33165 gsumesum 34023 sgnneg 34505 elfuns 35879 finminlem 36284 bj-bibibi 36552 itg2addnclem 37631 heiborlem10 37780 aks4d1p8 42044 cantnfresb 43286 naddwordnexlem4 43363 ontric3g 43484 or3or 43985 ntrclselnel2 44020 clsneifv3 44072 islininds2 48213 |
Copyright terms: Public domain | W3C validator |