| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
| Ref | Expression |
|---|---|
| con2bid.1 | ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con2bid | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2bid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) | |
| 2 | con2bi 353 | . 2 ⊢ ((𝜒 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜒)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con1bid 355 sotric 5576 sotrieq 5577 sotr2 5580 isso2i 5583 sotr3 5587 sotri2 6102 sotri3 6103 somin1 6106 somincom 6107 ordtri2 6367 ordtr3 6378 ordintdif 6383 ord0eln0 6388 soisoi 7303 weniso 7329 ordunisuc2 7820 limsssuc 7826 nlimon 7827 tfrlem15 8360 oawordeulem 8518 nnawordex 8601 fimaxg 9234 suplub2 9412 fiming 9451 wemapsolem 9503 cantnflem1 9642 rankval3b 9779 cardsdomel 9927 harsdom 9948 isfin1-2 10338 fin1a2lem7 10359 suplem2pr 11006 xrltnle 11241 ltnle 11253 leloe 11260 xrlttri 13099 xrleloe 13104 xrrebnd 13128 supxrbnd2 13282 supxrbnd 13288 om2uzf1oi 13918 rabssnn0fi 13951 cnpart 15206 bits0e 16399 bitsmod 16406 bitsinv1lem 16411 sadcaddlem 16427 trfil2 23774 xrsxmet 24698 metdsge 24738 ovolunlem1a 25397 ovolunlem1 25398 itg2seq 25643 noetasuplem4 27648 noetainflem4 27652 sltnle 27665 sleloe 27666 sgnneg 32758 toslublem 32898 tosglblem 32900 isarchi2 33139 gsumesum 34049 elfuns 35903 finminlem 36306 bj-bibibi 36574 itg2addnclem 37665 heiborlem10 37814 aks4d1p8 42075 cantnfresb 43313 naddwordnexlem4 43390 ontric3g 43511 or3or 44012 ntrclselnel2 44047 clsneifv3 44099 islininds2 48470 resinsnlem 48856 |
| Copyright terms: Public domain | W3C validator |