Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con2bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
Ref | Expression |
---|---|
con2bid.1 | ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
Ref | Expression |
---|---|
con2bid | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2bid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) | |
2 | con2bi 357 | . 2 ⊢ ((𝜒 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜒)) | |
3 | 1, 2 | sylibr 237 | 1 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: con1bid 359 sotric 5496 sotrieq 5497 sotr2 5500 isso2i 5503 sotri2 5994 sotri3 5995 somin1 5998 somincom 5999 ordtri2 6248 ordtr3 6258 ordintdif 6262 ord0eln0 6267 soisoi 7137 weniso 7163 ordunisuc2 7623 limsssuc 7629 nlimon 7630 tfrlem15 8128 oawordeulem 8282 nnawordex 8365 onomeneq 8869 fimaxg 8918 suplub2 9077 fiming 9114 wemapsolem 9166 cantnflem1 9304 rankval3b 9442 cardsdomel 9590 harsdom 9611 isfin1-2 9999 fin1a2lem7 10020 suplem2pr 10667 xrltnle 10900 ltnle 10912 leloe 10919 xrlttri 12729 xrleloe 12734 xrrebnd 12758 supxrbnd2 12912 supxrbnd 12918 om2uzf1oi 13526 rabssnn0fi 13559 cnpart 14803 bits0e 15988 bitsmod 15995 bitsinv1lem 16000 sadcaddlem 16016 trfil2 22784 xrsxmet 23706 metdsge 23746 ovolunlem1a 24393 ovolunlem1 24394 itg2seq 24640 toslublem 30969 tosglblem 30971 isarchi2 31158 gsumesum 31739 sgnneg 32219 sotr3 33452 noetasuplem4 33676 noetainflem4 33680 sltnle 33693 sleloe 33694 elfuns 33954 finminlem 34244 bj-bibibi 34505 itg2addnclem 35565 heiborlem10 35715 ontric3g 40814 or3or 41308 ntrclselnel2 41345 clsneifv3 41397 islininds2 45498 |
Copyright terms: Public domain | W3C validator |