| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
| Ref | Expression |
|---|---|
| con2bid.1 | ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con2bid | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2bid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) | |
| 2 | con2bi 353 | . 2 ⊢ ((𝜒 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜒)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con1bid 355 sotric 5621 sotrieq 5622 sotr2 5625 isso2i 5628 sotr3 5632 sotri2 6148 sotri3 6149 somin1 6152 somincom 6153 ordtri2 6418 ordtr3 6428 ordintdif 6433 ord0eln0 6438 soisoi 7349 weniso 7375 ordunisuc2 7866 limsssuc 7872 nlimon 7873 tfrlem15 8433 oawordeulem 8593 nnawordex 8676 onomeneqOLD 9267 fimaxg 9324 suplub2 9502 fiming 9539 wemapsolem 9591 cantnflem1 9730 rankval3b 9867 cardsdomel 10015 harsdom 10036 isfin1-2 10426 fin1a2lem7 10447 suplem2pr 11094 xrltnle 11329 ltnle 11341 leloe 11348 xrlttri 13182 xrleloe 13187 xrrebnd 13211 supxrbnd2 13365 supxrbnd 13371 om2uzf1oi 13995 rabssnn0fi 14028 cnpart 15280 bits0e 16467 bitsmod 16474 bitsinv1lem 16479 sadcaddlem 16495 trfil2 23896 xrsxmet 24832 metdsge 24872 ovolunlem1a 25532 ovolunlem1 25533 itg2seq 25778 noetasuplem4 27782 noetainflem4 27786 sltnle 27799 sleloe 27800 toslublem 32963 tosglblem 32965 isarchi2 33193 gsumesum 34061 sgnneg 34544 elfuns 35917 finminlem 36320 bj-bibibi 36588 itg2addnclem 37679 heiborlem10 37828 aks4d1p8 42089 cantnfresb 43342 naddwordnexlem4 43419 ontric3g 43540 or3or 44041 ntrclselnel2 44076 clsneifv3 44128 islininds2 48406 resinsnlem 48777 |
| Copyright terms: Public domain | W3C validator |