| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
| Ref | Expression |
|---|---|
| con2bid.1 | ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con2bid | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2bid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) | |
| 2 | con2bi 353 | . 2 ⊢ ((𝜒 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜒)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con1bid 355 sotric 5596 sotrieq 5597 sotr2 5600 isso2i 5603 sotr3 5607 sotri2 6123 sotri3 6124 somin1 6127 somincom 6128 ordtri2 6392 ordtr3 6403 ordintdif 6408 ord0eln0 6413 soisoi 7326 weniso 7352 ordunisuc2 7844 limsssuc 7850 nlimon 7851 tfrlem15 8411 oawordeulem 8571 nnawordex 8654 onomeneqOLD 9243 fimaxg 9300 suplub2 9478 fiming 9517 wemapsolem 9569 cantnflem1 9708 rankval3b 9845 cardsdomel 9993 harsdom 10014 isfin1-2 10404 fin1a2lem7 10425 suplem2pr 11072 xrltnle 11307 ltnle 11319 leloe 11326 xrlttri 13160 xrleloe 13165 xrrebnd 13189 supxrbnd2 13343 supxrbnd 13349 om2uzf1oi 13976 rabssnn0fi 14009 cnpart 15264 bits0e 16453 bitsmod 16460 bitsinv1lem 16465 sadcaddlem 16481 trfil2 23830 xrsxmet 24754 metdsge 24794 ovolunlem1a 25454 ovolunlem1 25455 itg2seq 25700 noetasuplem4 27705 noetainflem4 27709 sltnle 27722 sleloe 27723 sgnneg 32817 toslublem 32957 tosglblem 32959 isarchi2 33188 gsumesum 34095 elfuns 35938 finminlem 36341 bj-bibibi 36609 itg2addnclem 37700 heiborlem10 37849 aks4d1p8 42105 cantnfresb 43315 naddwordnexlem4 43392 ontric3g 43513 or3or 44014 ntrclselnel2 44049 clsneifv3 44101 islininds2 48427 resinsnlem 48813 |
| Copyright terms: Public domain | W3C validator |