![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con2bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
Ref | Expression |
---|---|
con2bid.1 | ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
Ref | Expression |
---|---|
con2bid | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2bid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) | |
2 | con2bi 353 | . 2 ⊢ ((𝜒 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜒)) | |
3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: con1bid 355 sotric 5626 sotrieq 5627 sotr2 5630 isso2i 5633 sotr3 5637 sotri2 6152 sotri3 6153 somin1 6156 somincom 6157 ordtri2 6421 ordtr3 6431 ordintdif 6436 ord0eln0 6441 soisoi 7348 weniso 7374 ordunisuc2 7865 limsssuc 7871 nlimon 7872 tfrlem15 8431 oawordeulem 8591 nnawordex 8674 onomeneqOLD 9264 fimaxg 9321 suplub2 9499 fiming 9536 wemapsolem 9588 cantnflem1 9727 rankval3b 9864 cardsdomel 10012 harsdom 10033 isfin1-2 10423 fin1a2lem7 10444 suplem2pr 11091 xrltnle 11326 ltnle 11338 leloe 11345 xrlttri 13178 xrleloe 13183 xrrebnd 13207 supxrbnd2 13361 supxrbnd 13367 om2uzf1oi 13991 rabssnn0fi 14024 cnpart 15276 bits0e 16463 bitsmod 16470 bitsinv1lem 16475 sadcaddlem 16491 trfil2 23911 xrsxmet 24845 metdsge 24885 ovolunlem1a 25545 ovolunlem1 25546 itg2seq 25792 noetasuplem4 27796 noetainflem4 27800 sltnle 27813 sleloe 27814 toslublem 32947 tosglblem 32949 isarchi2 33175 gsumesum 34040 sgnneg 34522 elfuns 35897 finminlem 36301 bj-bibibi 36569 itg2addnclem 37658 heiborlem10 37807 aks4d1p8 42069 cantnfresb 43314 naddwordnexlem4 43391 ontric3g 43512 or3or 44013 ntrclselnel2 44048 clsneifv3 44100 islininds2 48330 |
Copyright terms: Public domain | W3C validator |