Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con2bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
Ref | Expression |
---|---|
con2bid.1 | ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
Ref | Expression |
---|---|
con2bid | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2bid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) | |
2 | con2bi 353 | . 2 ⊢ ((𝜒 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜒)) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: con1bid 355 sotric 5522 sotrieq 5523 sotr2 5526 isso2i 5529 sotri2 6023 sotri3 6024 somin1 6027 somincom 6028 ordtri2 6286 ordtr3 6296 ordintdif 6300 ord0eln0 6305 soisoi 7179 weniso 7205 ordunisuc2 7666 limsssuc 7672 nlimon 7673 tfrlem15 8194 oawordeulem 8347 nnawordex 8430 onomeneq 8943 fimaxg 8991 suplub2 9150 fiming 9187 wemapsolem 9239 cantnflem1 9377 rankval3b 9515 cardsdomel 9663 harsdom 9684 isfin1-2 10072 fin1a2lem7 10093 suplem2pr 10740 xrltnle 10973 ltnle 10985 leloe 10992 xrlttri 12802 xrleloe 12807 xrrebnd 12831 supxrbnd2 12985 supxrbnd 12991 om2uzf1oi 13601 rabssnn0fi 13634 cnpart 14879 bits0e 16064 bitsmod 16071 bitsinv1lem 16076 sadcaddlem 16092 trfil2 22946 xrsxmet 23878 metdsge 23918 ovolunlem1a 24565 ovolunlem1 24566 itg2seq 24812 toslublem 31152 tosglblem 31154 isarchi2 31341 gsumesum 31927 sgnneg 32407 sotr3 33639 noetasuplem4 33866 noetainflem4 33870 sltnle 33883 sleloe 33884 elfuns 34144 finminlem 34434 bj-bibibi 34695 itg2addnclem 35755 heiborlem10 35905 aks4d1p8 40023 ontric3g 41027 or3or 41520 ntrclselnel2 41557 clsneifv3 41609 islininds2 45713 |
Copyright terms: Public domain | W3C validator |