| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con2bid | Structured version Visualization version GIF version | ||
| Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
| Ref | Expression |
|---|---|
| con2bid.1 | ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
| Ref | Expression |
|---|---|
| con2bid | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2bid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) | |
| 2 | con2bi 353 | . 2 ⊢ ((𝜒 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜒)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con1bid 355 sotric 5552 sotrieq 5553 sotr2 5556 isso2i 5559 sotr3 5563 sotri2 6075 sotri3 6076 somin1 6079 somincom 6080 ordtri2 6341 ordtr3 6352 ordintdif 6357 ord0eln0 6362 soisoi 7262 weniso 7288 ordunisuc2 7774 limsssuc 7780 nlimon 7781 tfrlem15 8311 oawordeulem 8469 nnawordex 8552 fimaxg 9171 suplub2 9345 fiming 9384 wemapsolem 9436 cantnflem1 9579 rankval3b 9719 cardsdomel 9867 harsdom 9888 isfin1-2 10276 fin1a2lem7 10297 suplem2pr 10944 xrltnle 11179 ltnle 11192 leloe 11199 xrlttri 13038 xrleloe 13043 xrrebnd 13067 supxrbnd2 13221 supxrbnd 13227 om2uzf1oi 13860 rabssnn0fi 13893 cnpart 15147 bits0e 16340 bitsmod 16347 bitsinv1lem 16352 sadcaddlem 16368 trfil2 23802 xrsxmet 24725 metdsge 24765 ovolunlem1a 25424 ovolunlem1 25425 itg2seq 25670 noetasuplem4 27675 noetainflem4 27679 sltnle 27692 sleloe 27693 sgnneg 32816 toslublem 32953 tosglblem 32955 isarchi2 33154 gsumesum 34072 elfuns 35957 finminlem 36360 bj-bibibi 36628 itg2addnclem 37719 heiborlem10 37868 aks4d1p8 42128 cantnfresb 43365 naddwordnexlem4 43442 ontric3g 43563 or3or 44064 ntrclselnel2 44099 clsneifv3 44151 islininds2 48524 resinsnlem 48910 |
| Copyright terms: Public domain | W3C validator |