Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con2bid | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
Ref | Expression |
---|---|
con2bid.1 | ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
Ref | Expression |
---|---|
con2bid | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2bid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) | |
2 | con2bi 354 | . 2 ⊢ ((𝜒 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜒)) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: con1bid 356 sotric 5564 sotrieq 5565 sotr2 5568 isso2i 5571 sotr3 5575 sotri2 6073 sotri3 6074 somin1 6077 somincom 6078 ordtri2 6341 ordtr3 6351 ordintdif 6355 ord0eln0 6360 soisoi 7259 weniso 7285 ordunisuc2 7762 limsssuc 7768 nlimon 7769 tfrlem15 8297 oawordeulem 8460 nnawordex 8543 onomeneqOLD 9098 fimaxg 9159 suplub2 9322 fiming 9359 wemapsolem 9411 cantnflem1 9550 rankval3b 9687 cardsdomel 9835 harsdom 9856 isfin1-2 10246 fin1a2lem7 10267 suplem2pr 10914 xrltnle 11147 ltnle 11159 leloe 11166 xrlttri 12978 xrleloe 12983 xrrebnd 13007 supxrbnd2 13161 supxrbnd 13167 om2uzf1oi 13778 rabssnn0fi 13811 cnpart 15050 bits0e 16235 bitsmod 16242 bitsinv1lem 16247 sadcaddlem 16263 trfil2 23143 xrsxmet 24077 metdsge 24117 ovolunlem1a 24765 ovolunlem1 24766 itg2seq 25012 noetasuplem4 26989 noetainflem4 26993 sltnle 27006 sleloe 27007 toslublem 31535 tosglblem 31537 isarchi2 31724 gsumesum 32323 sgnneg 32805 elfuns 34354 finminlem 34644 bj-bibibi 34905 itg2addnclem 35984 heiborlem10 36134 aks4d1p8 40400 ontric3g 41503 or3or 42004 ntrclselnel2 42041 clsneifv3 42093 islininds2 46243 |
Copyright terms: Public domain | W3C validator |