Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-consensusALT | Structured version Visualization version GIF version |
Description: Alternate proof of bj-consensus 34738. (Contributed by BJ, 30-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-consensusALT | ⊢ ((if-(𝜑, 𝜓, 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ if-(𝜑, 𝜓, 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 866 | . 2 ⊢ ((if-(𝜑, 𝜓, 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜓 ∧ 𝜒) ∨ if-(𝜑, 𝜓, 𝜒))) | |
2 | anifp 1068 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | |
3 | pm4.72 946 | . . 3 ⊢ (((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) ↔ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜓 ∧ 𝜒) ∨ if-(𝜑, 𝜓, 𝜒)))) | |
4 | 2, 3 | mpbi 229 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜓 ∧ 𝜒) ∨ if-(𝜑, 𝜓, 𝜒))) |
5 | 1, 4 | bitr4i 277 | 1 ⊢ ((if-(𝜑, 𝜓, 𝜒) ∨ (𝜓 ∧ 𝜒)) ↔ if-(𝜑, 𝜓, 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |