![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsal1ti | Structured version Visualization version GIF version |
Description: Inference associated with bj-equsal1t 36737. (Contributed by BJ, 30-Sep-2018.) |
Ref | Expression |
---|---|
bj-equsal1ti.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
bj-equsal1ti | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-equsal1ti.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | bj-equsal1t 36737 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2173 ax-13 2374 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 |
This theorem is referenced by: bj-equsal1 36739 bj-equsal2 36740 |
Copyright terms: Public domain | W3C validator |