Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-equsal1ti Structured version   Visualization version   GIF version

Theorem bj-equsal1ti 35006
Description: Inference associated with bj-equsal1t 35005. (Contributed by BJ, 30-Sep-2018.)
Hypothesis
Ref Expression
bj-equsal1ti.1 𝑥𝜑
Assertion
Ref Expression
bj-equsal1ti (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑)

Proof of Theorem bj-equsal1ti
StepHypRef Expression
1 bj-equsal1ti.1 . 2 𝑥𝜑
2 bj-equsal1t 35005 . 2 (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑))
31, 2ax-mp 5 1 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787
This theorem is referenced by:  bj-equsal1  35007  bj-equsal2  35008
  Copyright terms: Public domain W3C validator