Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsal1ti | Structured version Visualization version GIF version |
Description: Inference associated with bj-equsal1t 34932. (Contributed by BJ, 30-Sep-2018.) |
Ref | Expression |
---|---|
bj-equsal1ti.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
bj-equsal1ti | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-equsal1ti.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | bj-equsal1t 34932 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 |
This theorem is referenced by: bj-equsal1 34934 bj-equsal2 34935 |
Copyright terms: Public domain | W3C validator |