| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsal1t | Structured version Visualization version GIF version | ||
| Description: Duplication of wl-equsal1t 37565, with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use alequexv 2001 and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom 37566 is also interesting. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-equsal1t | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-alequex 36807 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
| 2 | 19.9t 2205 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
| 3 | 1, 2 | imbitrid 244 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
| 4 | nf5r 2195 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
| 5 | ala1 1813 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 6 | 4, 5 | syl6 35 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 7 | 3, 6 | impbid 212 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: bj-equsal1ti 36846 |
| Copyright terms: Public domain | W3C validator |