Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsal1t | Structured version Visualization version GIF version |
Description: Duplication of wl-equsal1t 35627, with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use alequexv 2005 and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom 35628 is also interesting. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-equsal1t | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-alequex 34893 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
2 | 19.9t 2200 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
3 | 1, 2 | syl5ib 243 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
4 | nf5r 2189 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
5 | ala1 1817 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
6 | 4, 5 | syl6 35 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
7 | 3, 6 | impbid 211 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 |
This theorem is referenced by: bj-equsal1ti 34933 |
Copyright terms: Public domain | W3C validator |