|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsal1t | Structured version Visualization version GIF version | ||
| Description: Duplication of wl-equsal1t 37544, with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use alequexv 1999 and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom 37545 is also interesting. (Contributed by BJ, 6-Oct-2018.) | 
| Ref | Expression | 
|---|---|
| bj-equsal1t | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-alequex 36786 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
| 2 | 19.9t 2203 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
| 3 | 1, 2 | imbitrid 244 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜑)) | 
| 4 | nf5r 2193 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
| 5 | ala1 1812 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 6 | 4, 5 | syl6 35 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 7 | 3, 6 | impbid 212 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 Ⅎwnf 1782 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 ax-13 2376 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 | 
| This theorem is referenced by: bj-equsal1ti 36825 | 
| Copyright terms: Public domain | W3C validator |