Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-equsal1t Structured version   Visualization version   GIF version

Theorem bj-equsal1t 34932
Description: Duplication of wl-equsal1t 35627, with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use alequexv 2005 and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom 35628 is also interesting. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-equsal1t (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑))

Proof of Theorem bj-equsal1t
StepHypRef Expression
1 bj-alequex 34893 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
2 19.9t 2200 . . 3 (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
31, 2syl5ib 243 . 2 (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
4 nf5r 2189 . . 3 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
5 ala1 1817 . . 3 (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
64, 5syl6 35 . 2 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
73, 6impbid 211 1 (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788
This theorem is referenced by:  bj-equsal1ti  34933
  Copyright terms: Public domain W3C validator