![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsal1t | Structured version Visualization version GIF version |
Description: Duplication of wl-equsal1t 33924, with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use bj-alequexv 33248 and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom 33925 is also interesting. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-equsal1t | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-alequex 33300 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | |
2 | 19.9t 2189 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
3 | 1, 2 | syl5ib 236 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
4 | nf5r 2178 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
5 | ala1 1857 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
6 | 4, 5 | syl6 35 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
7 | 3, 6 | impbid 204 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1599 ∃wex 1823 Ⅎwnf 1827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-12 2163 ax-13 2334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 df-nf 1828 |
This theorem is referenced by: bj-equsal1ti 33389 |
Copyright terms: Public domain | W3C validator |