Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsal1 | Structured version Visualization version GIF version |
Description: One direction of equsal 2418. (Contributed by BJ, 30-Sep-2018.) |
Ref | Expression |
---|---|
bj-equsal1.1 | ⊢ Ⅎ𝑥𝜓 |
bj-equsal1.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
bj-equsal1 | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-equsal1.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
2 | 1 | a2i 14 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜓)) |
3 | 2 | alimi 1817 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
4 | bj-equsal1.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
5 | 4 | bj-equsal1ti 34985 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜓) |
6 | 3, 5 | sylib 217 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-12 2174 ax-13 2373 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-nf 1790 |
This theorem is referenced by: bj-equsal 34988 |
Copyright terms: Public domain | W3C validator |