Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-equsal1 Structured version   Visualization version   GIF version

Theorem bj-equsal1 34986
Description: One direction of equsal 2418. (Contributed by BJ, 30-Sep-2018.)
Hypotheses
Ref Expression
bj-equsal1.1 𝑥𝜓
bj-equsal1.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-equsal1 (∀𝑥(𝑥 = 𝑦𝜑) → 𝜓)

Proof of Theorem bj-equsal1
StepHypRef Expression
1 bj-equsal1.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
21a2i 14 . . 3 ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜓))
32alimi 1817 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜓))
4 bj-equsal1.1 . . 3 𝑥𝜓
54bj-equsal1ti 34985 . 2 (∀𝑥(𝑥 = 𝑦𝜓) ↔ 𝜓)
63, 5sylib 217 1 (∀𝑥(𝑥 = 𝑦𝜑) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wnf 1789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-12 2174  ax-13 2373
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-nf 1790
This theorem is referenced by:  bj-equsal  34988
  Copyright terms: Public domain W3C validator