Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-equsal2 Structured version   Visualization version   GIF version

Theorem bj-equsal2 34935
Description: One direction of equsal 2417. (Contributed by BJ, 30-Sep-2018.)
Hypotheses
Ref Expression
bj-equsal2.1 𝑥𝜑
bj-equsal2.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-equsal2 (𝜑 → ∀𝑥(𝑥 = 𝑦𝜓))

Proof of Theorem bj-equsal2
StepHypRef Expression
1 bj-equsal2.1 . . 3 𝑥𝜑
21bj-equsal1ti 34933 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑)
3 bj-equsal2.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43a2i 14 . . 3 ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜓))
54alimi 1815 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜓))
62, 5sylbir 234 1 (𝜑 → ∀𝑥(𝑥 = 𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788
This theorem is referenced by:  bj-equsal  34936
  Copyright terms: Public domain W3C validator