Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsal2 | Structured version Visualization version GIF version |
Description: One direction of equsal 2417. (Contributed by BJ, 30-Sep-2018.) |
Ref | Expression |
---|---|
bj-equsal2.1 | ⊢ Ⅎ𝑥𝜑 |
bj-equsal2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
bj-equsal2 | ⊢ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-equsal2.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | bj-equsal1ti 35006 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑) |
3 | bj-equsal2.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
4 | 3 | a2i 14 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜓)) |
5 | 4 | alimi 1814 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
6 | 2, 5 | sylbir 234 | 1 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 |
This theorem is referenced by: bj-equsal 35009 |
Copyright terms: Public domain | W3C validator |