| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsal2 | Structured version Visualization version GIF version | ||
| Description: One direction of equsal 2420. (Contributed by BJ, 30-Sep-2018.) |
| Ref | Expression |
|---|---|
| bj-equsal2.1 | ⊢ Ⅎ𝑥𝜑 |
| bj-equsal2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| bj-equsal2 | ⊢ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-equsal2.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | bj-equsal1ti 36758 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑) |
| 3 | bj-equsal2.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 4 | 3 | a2i 14 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜓)) |
| 5 | 4 | alimi 1810 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
| 6 | 2, 5 | sylbir 235 | 1 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 ax-13 2375 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: bj-equsal 36761 |
| Copyright terms: Public domain | W3C validator |