Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  copsex2d Structured version   Visualization version   GIF version

Theorem copsex2d 35237
Description: Implicit substitution deduction for ordered pairs. (Contributed by BJ, 25-Dec-2023.)
Hypotheses
Ref Expression
copsex2d.xph (𝜑 → ∀𝑥𝜑)
copsex2d.yph (𝜑 → ∀𝑦𝜑)
copsex2d.xch (𝜑 → Ⅎ𝑥𝜒)
copsex2d.ych (𝜑 → Ⅎ𝑦𝜒)
copsex2d.exa (𝜑𝐴𝑈)
copsex2d.exb (𝜑𝐵𝑉)
copsex2d.is ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
copsex2d (𝜑 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem copsex2d
StepHypRef Expression
1 copsex2d.exa . . 3 (𝜑𝐴𝑈)
2 elisset 2820 . . 3 (𝐴𝑈 → ∃𝑥 𝑥 = 𝐴)
31, 2syl 17 . 2 (𝜑 → ∃𝑥 𝑥 = 𝐴)
4 copsex2d.exb . . 3 (𝜑𝐵𝑉)
5 elisset 2820 . . 3 (𝐵𝑉 → ∃𝑦 𝑦 = 𝐵)
64, 5syl 17 . 2 (𝜑 → ∃𝑦 𝑦 = 𝐵)
7 exdistrv 1960 . . 3 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
8 copsex2d.xph . . . 4 (𝜑 → ∀𝑥𝜑)
9 nfe1 2149 . . . . . . 7 𝑥𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓)
109a1i 11 . . . . . 6 (𝜑 → Ⅎ𝑥𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
11 copsex2d.xch . . . . . 6 (𝜑 → Ⅎ𝑥𝜒)
1210, 11nfbid 1906 . . . . 5 (𝜑 → Ⅎ𝑥(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒))
131219.9d 2199 . . . 4 (𝜑 → (∃𝑥(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒)))
14 copsex2d.yph . . . . 5 (𝜑 → ∀𝑦𝜑)
15 nfe1 2149 . . . . . . . . 9 𝑦𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓)
1615a1i 11 . . . . . . . 8 (𝜑 → Ⅎ𝑦𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
178, 16bj-nfexd 35236 . . . . . . 7 (𝜑 → Ⅎ𝑦𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
18 copsex2d.ych . . . . . . 7 (𝜑 → Ⅎ𝑦𝜒)
1917, 18nfbid 1906 . . . . . 6 (𝜑 → Ⅎ𝑦(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒))
201919.9d 2199 . . . . 5 (𝜑 → (∃𝑦(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒)))
21 opeq12 4803 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
22 copsexgw 5398 . . . . . . . . . . 11 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝜓 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
2322bicomd 222 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜓))
2423eqcoms 2746 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜓))
2521, 24syl 17 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜓))
2625adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜓))
27 copsex2d.is . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
2826, 27bitrd 278 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒))
2928ex 412 . . . . 5 (𝜑 → ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒)))
3014, 20, 29bj-exlimd 34733 . . . 4 (𝜑 → (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒)))
318, 13, 30bj-exlimd 34733 . . 3 (𝜑 → (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒)))
327, 31syl5bir 242 . 2 (𝜑 → ((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒)))
333, 6, 32mp2and 695 1 (𝜑 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wnf 1787  wcel 2108  cop 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565
This theorem is referenced by:  copsex2b  35238  opelopabd  35239
  Copyright terms: Public domain W3C validator