![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimd | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
Ref | Expression |
---|---|
exlimd.1 | ⊢ Ⅎ𝑥𝜑 |
exlimd.2 | ⊢ Ⅎ𝑥𝜒 |
exlimd.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimd | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | exlimd.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | eximd 2217 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
4 | exlimd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
5 | 4 | 19.9 2206 | . 2 ⊢ (∃𝑥𝜒 ↔ 𝜒) |
6 | 3, 5 | imbitrdi 251 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 |
This theorem is referenced by: exlimimdd 2220 exlimdh 2294 equs5 2468 moexexlem 2629 2eu6 2660 ceqsalgALT 3526 alxfr 5425 copsex2t 5512 mosubopt 5529 ov3 7613 tz7.48-1 8499 ac6c4 10550 fsum2dlem 15818 fprod2dlem 16028 gsum2d2lem 20015 exlimim 37308 exellim 37310 wl-lem-moexsb 37522 exlimddvf 38081 mnringmulrcld 44197 fourierdlem31 46059 or2expropbi 46949 ich2exprop 47345 ichreuopeq 47347 reuopreuprim 47400 |
Copyright terms: Public domain | W3C validator |