MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimd Structured version   Visualization version   GIF version

Theorem exlimd 2219
Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
Hypotheses
Ref Expression
exlimd.1 𝑥𝜑
exlimd.2 𝑥𝜒
exlimd.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimd (𝜑 → (∃𝑥𝜓𝜒))

Proof of Theorem exlimd
StepHypRef Expression
1 exlimd.1 . . 3 𝑥𝜑
2 exlimd.3 . . 3 (𝜑 → (𝜓𝜒))
31, 2eximd 2217 . 2 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
4 exlimd.2 . . 3 𝑥𝜒
5419.9 2206 . 2 (∃𝑥𝜒𝜒)
63, 5imbitrdi 251 1 (𝜑 → (∃𝑥𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1777  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-nf 1782
This theorem is referenced by:  exlimimdd  2220  exlimdh  2294  equs5  2468  moexexlem  2629  2eu6  2660  ceqsalgALT  3526  alxfr  5425  copsex2t  5512  mosubopt  5529  ov3  7613  tz7.48-1  8499  ac6c4  10550  fsum2dlem  15818  fprod2dlem  16028  gsum2d2lem  20015  exlimim  37308  exellim  37310  wl-lem-moexsb  37522  exlimddvf  38081  mnringmulrcld  44197  fourierdlem31  46059  or2expropbi  46949  ich2exprop  47345  ichreuopeq  47347  reuopreuprim  47400
  Copyright terms: Public domain W3C validator