MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimd Structured version   Visualization version   GIF version

Theorem exlimd 2210
Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
Hypotheses
Ref Expression
exlimd.1 𝑥𝜑
exlimd.2 𝑥𝜒
exlimd.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimd (𝜑 → (∃𝑥𝜓𝜒))

Proof of Theorem exlimd
StepHypRef Expression
1 exlimd.1 . . 3 𝑥𝜑
2 exlimd.3 . . 3 (𝜑 → (𝜓𝜒))
31, 2eximd 2208 . 2 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
4 exlimd.2 . . 3 𝑥𝜒
5419.9 2197 . 2 (∃𝑥𝜒𝜒)
63, 5imbitrdi 250 1 (𝜑 → (∃𝑥𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-ex 1781  df-nf 1785
This theorem is referenced by:  exlimimdd  2211  exlimdh  2285  equs5  2458  moexexlem  2621  2eu6  2651  ceqsalgALT  3508  alxfr  5405  copsex2t  5492  mosubopt  5510  ov3  7574  tz7.48-1  8449  ac6c4  10482  fsum2dlem  15723  fprod2dlem  15931  gsum2d2lem  19889  exlimim  36689  exellim  36691  wl-lem-moexsb  36899  exlimddvf  37455  mnringmulrcld  43452  fourierdlem31  45315  or2expropbi  46205  ich2exprop  46600  ichreuopeq  46602  reuopreuprim  46655
  Copyright terms: Public domain W3C validator