MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimd Structured version   Visualization version   GIF version

Theorem exlimd 2211
Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
Hypotheses
Ref Expression
exlimd.1 𝑥𝜑
exlimd.2 𝑥𝜒
exlimd.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimd (𝜑 → (∃𝑥𝜓𝜒))

Proof of Theorem exlimd
StepHypRef Expression
1 exlimd.1 . . 3 𝑥𝜑
2 exlimd.3 . . 3 (𝜑 → (𝜓𝜒))
31, 2eximd 2209 . 2 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
4 exlimd.2 . . 3 𝑥𝜒
5419.9 2198 . 2 (∃𝑥𝜒𝜒)
63, 5imbitrdi 250 1 (𝜑 → (∃𝑥𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1781  wnf 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1782  df-nf 1786
This theorem is referenced by:  exlimimdd  2212  exlimdh  2286  equs5  2459  moexexlem  2622  2eu6  2652  ceqsalgALT  3508  alxfr  5405  copsex2t  5492  mosubopt  5510  ov3  7569  tz7.48-1  8442  ac6c4  10475  fsum2dlem  15715  fprod2dlem  15923  gsum2d2lem  19840  exlimim  36218  exellim  36220  wl-lem-moexsb  36428  exlimddvf  36984  mnringmulrcld  42977  fourierdlem31  44844  or2expropbi  45734  ich2exprop  46129  ichreuopeq  46131  reuopreuprim  46184
  Copyright terms: Public domain W3C validator