![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimd | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
Ref | Expression |
---|---|
exlimd.1 | ⊢ Ⅎ𝑥𝜑 |
exlimd.2 | ⊢ Ⅎ𝑥𝜒 |
exlimd.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimd | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | exlimd.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | eximd 2208 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
4 | exlimd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
5 | 4 | 19.9 2197 | . 2 ⊢ (∃𝑥𝜒 ↔ 𝜒) |
6 | 3, 5 | imbitrdi 250 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1780 Ⅎwnf 1784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-ex 1781 df-nf 1785 |
This theorem is referenced by: exlimimdd 2211 exlimdh 2285 equs5 2458 moexexlem 2621 2eu6 2651 ceqsalgALT 3508 alxfr 5405 copsex2t 5492 mosubopt 5510 ov3 7574 tz7.48-1 8449 ac6c4 10482 fsum2dlem 15723 fprod2dlem 15931 gsum2d2lem 19889 exlimim 36689 exellim 36691 wl-lem-moexsb 36899 exlimddvf 37455 mnringmulrcld 43452 fourierdlem31 45315 or2expropbi 46205 ich2exprop 46600 ichreuopeq 46602 reuopreuprim 46655 |
Copyright terms: Public domain | W3C validator |