| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimd | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
| Ref | Expression |
|---|---|
| exlimd.1 | ⊢ Ⅎ𝑥𝜑 |
| exlimd.2 | ⊢ Ⅎ𝑥𝜒 |
| exlimd.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimd | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | exlimd.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | eximd 2219 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| 4 | exlimd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 5 | 4 | 19.9 2208 | . 2 ⊢ (∃𝑥𝜒 ↔ 𝜒) |
| 6 | 3, 5 | imbitrdi 251 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: exlimimdd 2222 exlimdh 2292 equs5 2460 moexexlem 2621 2eu6 2652 ceqsalgALT 3473 alxfr 5345 copsex2t 5432 mosubopt 5450 ov3 7509 tz7.48-1 8362 ac6c4 10372 fsum2dlem 15677 fprod2dlem 15887 gsum2d2lem 19886 exlimim 37382 exellim 37384 wl-lem-moexsb 37608 exlimddvf 38167 mnringmulrcld 44267 fourierdlem31 46182 or2expropbi 47071 ich2exprop 47508 ichreuopeq 47510 reuopreuprim 47563 |
| Copyright terms: Public domain | W3C validator |