Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimd | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
Ref | Expression |
---|---|
exlimd.1 | ⊢ Ⅎ𝑥𝜑 |
exlimd.2 | ⊢ Ⅎ𝑥𝜒 |
exlimd.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimd | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | exlimd.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | eximd 2209 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
4 | exlimd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
5 | 4 | 19.9 2198 | . 2 ⊢ (∃𝑥𝜒 ↔ 𝜒) |
6 | 3, 5 | syl6ib 250 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: exlimimdd 2212 exlimdh 2287 equs5 2460 moexexlem 2628 2eu6 2658 ceqsalgALT 3465 alxfr 5330 copsex2t 5406 mosubopt 5424 ov3 7435 tz7.48-1 8274 ac6c4 10237 fsum2dlem 15482 fprod2dlem 15690 gsum2d2lem 19574 exlimim 35513 exellim 35515 wl-lem-moexsb 35723 exlimddvf 36279 mnringmulrcld 41846 fourierdlem31 43679 or2expropbi 44528 ich2exprop 44923 ichreuopeq 44925 reuopreuprim 44978 |
Copyright terms: Public domain | W3C validator |