MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimd Structured version   Visualization version   GIF version

Theorem exlimd 2211
Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
Hypotheses
Ref Expression
exlimd.1 𝑥𝜑
exlimd.2 𝑥𝜒
exlimd.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimd (𝜑 → (∃𝑥𝜓𝜒))

Proof of Theorem exlimd
StepHypRef Expression
1 exlimd.1 . . 3 𝑥𝜑
2 exlimd.3 . . 3 (𝜑 → (𝜓𝜒))
31, 2eximd 2209 . 2 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
4 exlimd.2 . . 3 𝑥𝜒
5419.9 2198 . 2 (∃𝑥𝜒𝜒)
63, 5syl6ib 250 1 (𝜑 → (∃𝑥𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  exlimimdd  2212  exlimdh  2287  equs5  2460  moexexlem  2628  2eu6  2658  ceqsalgALT  3465  alxfr  5330  copsex2t  5406  mosubopt  5424  ov3  7435  tz7.48-1  8274  ac6c4  10237  fsum2dlem  15482  fprod2dlem  15690  gsum2d2lem  19574  exlimim  35513  exellim  35515  wl-lem-moexsb  35723  exlimddvf  36279  mnringmulrcld  41846  fourierdlem31  43679  or2expropbi  44528  ich2exprop  44923  ichreuopeq  44925  reuopreuprim  44978
  Copyright terms: Public domain W3C validator