Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimd | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
Ref | Expression |
---|---|
exlimd.1 | ⊢ Ⅎ𝑥𝜑 |
exlimd.2 | ⊢ Ⅎ𝑥𝜒 |
exlimd.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimd | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | exlimd.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | eximd 2212 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
4 | exlimd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
5 | 4 | 19.9 2201 | . 2 ⊢ (∃𝑥𝜒 ↔ 𝜒) |
6 | 3, 5 | syl6ib 250 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: exlimimdd 2215 exlimdh 2290 equs5 2460 moexexlem 2628 2eu6 2658 ceqsalgALT 3455 alxfr 5325 copsex2t 5400 mosubopt 5418 ov3 7413 tz7.48-1 8244 ac6c4 10168 fsum2dlem 15410 fprod2dlem 15618 gsum2d2lem 19489 exlimim 35440 exellim 35442 wl-lem-moexsb 35650 exlimddvf 36206 mnringmulrcld 41735 fourierdlem31 43569 or2expropbi 44415 ich2exprop 44811 ichreuopeq 44813 reuopreuprim 44866 |
Copyright terms: Public domain | W3C validator |