MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimd Structured version   Visualization version   GIF version

Theorem exlimd 2209
Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
Hypotheses
Ref Expression
exlimd.1 𝑥𝜑
exlimd.2 𝑥𝜒
exlimd.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimd (𝜑 → (∃𝑥𝜓𝜒))

Proof of Theorem exlimd
StepHypRef Expression
1 exlimd.1 . . 3 𝑥𝜑
2 exlimd.3 . . 3 (𝜑 → (𝜓𝜒))
31, 2eximd 2207 . 2 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
4 exlimd.2 . . 3 𝑥𝜒
5419.9 2196 . 2 (∃𝑥𝜒𝜒)
63, 5imbitrdi 250 1 (𝜑 → (∃𝑥𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-12 2169
This theorem depends on definitions:  df-bi 206  df-ex 1780  df-nf 1784
This theorem is referenced by:  exlimimdd  2210  exlimdh  2284  equs5  2457  moexexlem  2620  2eu6  2650  ceqsalgALT  3507  alxfr  5406  copsex2t  5493  mosubopt  5511  ov3  7574  tz7.48-1  8447  ac6c4  10480  fsum2dlem  15722  fprod2dlem  15930  gsum2d2lem  19884  exlimim  36528  exellim  36530  wl-lem-moexsb  36738  exlimddvf  37294  mnringmulrcld  43291  fourierdlem31  45154  or2expropbi  46044  ich2exprop  46439  ichreuopeq  46441  reuopreuprim  46494
  Copyright terms: Public domain W3C validator