MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimd Structured version   Visualization version   GIF version

Theorem exlimd 2221
Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
Hypotheses
Ref Expression
exlimd.1 𝑥𝜑
exlimd.2 𝑥𝜒
exlimd.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimd (𝜑 → (∃𝑥𝜓𝜒))

Proof of Theorem exlimd
StepHypRef Expression
1 exlimd.1 . . 3 𝑥𝜑
2 exlimd.3 . . 3 (𝜑 → (𝜓𝜒))
31, 2eximd 2219 . 2 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
4 exlimd.2 . . 3 𝑥𝜒
5419.9 2208 . 2 (∃𝑥𝜒𝜒)
63, 5imbitrdi 251 1 (𝜑 → (∃𝑥𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-nf 1785
This theorem is referenced by:  exlimimdd  2222  exlimdh  2292  equs5  2460  moexexlem  2621  2eu6  2652  ceqsalgALT  3473  alxfr  5345  copsex2t  5432  mosubopt  5450  ov3  7509  tz7.48-1  8362  ac6c4  10372  fsum2dlem  15677  fprod2dlem  15887  gsum2d2lem  19886  exlimim  37382  exellim  37384  wl-lem-moexsb  37608  exlimddvf  38167  mnringmulrcld  44267  fourierdlem31  46182  or2expropbi  47071  ich2exprop  47508  ichreuopeq  47510  reuopreuprim  47563
  Copyright terms: Public domain W3C validator