![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exlimd | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
Ref | Expression |
---|---|
exlimd.1 | ⊢ Ⅎ𝑥𝜑 |
exlimd.2 | ⊢ Ⅎ𝑥𝜒 |
exlimd.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimd | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | exlimd.3 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | eximd 2214 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
4 | exlimd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
5 | 4 | 19.9 2203 | . 2 ⊢ (∃𝑥𝜒 ↔ 𝜒) |
6 | 3, 5 | imbitrdi 251 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1776 Ⅎwnf 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-ex 1777 df-nf 1781 |
This theorem is referenced by: exlimimdd 2217 exlimdh 2289 equs5 2463 moexexlem 2624 2eu6 2655 ceqsalgALT 3516 alxfr 5413 copsex2t 5503 mosubopt 5520 ov3 7596 tz7.48-1 8482 ac6c4 10519 fsum2dlem 15803 fprod2dlem 16013 gsum2d2lem 20006 exlimim 37325 exellim 37327 wl-lem-moexsb 37549 exlimddvf 38108 mnringmulrcld 44224 fourierdlem31 46094 or2expropbi 46984 ich2exprop 47396 ichreuopeq 47398 reuopreuprim 47451 |
Copyright terms: Public domain | W3C validator |