MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimd Structured version   Visualization version   GIF version

Theorem exlimd 2214
Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
Hypotheses
Ref Expression
exlimd.1 𝑥𝜑
exlimd.2 𝑥𝜒
exlimd.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
exlimd (𝜑 → (∃𝑥𝜓𝜒))

Proof of Theorem exlimd
StepHypRef Expression
1 exlimd.1 . . 3 𝑥𝜑
2 exlimd.3 . . 3 (𝜑 → (𝜓𝜒))
31, 2eximd 2212 . 2 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
4 exlimd.2 . . 3 𝑥𝜒
5419.9 2201 . 2 (∃𝑥𝜒𝜒)
63, 5syl6ib 250 1 (𝜑 → (∃𝑥𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788
This theorem is referenced by:  exlimimdd  2215  exlimdh  2290  equs5  2460  moexexlem  2628  2eu6  2658  ceqsalgALT  3455  alxfr  5325  copsex2t  5400  mosubopt  5418  ov3  7413  tz7.48-1  8244  ac6c4  10168  fsum2dlem  15410  fprod2dlem  15618  gsum2d2lem  19489  exlimim  35440  exellim  35442  wl-lem-moexsb  35650  exlimddvf  36206  mnringmulrcld  41735  fourierdlem31  43569  or2expropbi  44415  ich2exprop  44811  ichreuopeq  44813  reuopreuprim  44866
  Copyright terms: Public domain W3C validator