![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfimexal | Structured version Visualization version GIF version |
Description: A weak from of nonfreeness in either an antecedent or a consequent implies that a universally quantified implication is equivalent to the associated implication where the antecedent is existentially quantified and the consequent is universally quantified. The forward implication always holds (this is 19.38 1834) and the converse implication is the join of instances of bj-alrimg 36095 and bj-exlimg 36099 (see 19.38a 1835 and 19.38b 1836). TODO: prove a version where the antecedents use the nonfreeness quantifier. (Contributed by BJ, 9-Dec-2023.) |
Ref | Expression |
---|---|
bj-nfimexal | ⊢ (((∃𝑥𝜑 → ∀𝑥𝜑) ∨ (∃𝑥𝜓 → ∀𝑥𝜓)) → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.38 1834 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
2 | bj-alrimg 36095 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | |
3 | bj-exlimg 36099 | . . 3 ⊢ ((∃𝑥𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | |
4 | 2, 3 | jaoi 856 | . 2 ⊢ (((∃𝑥𝜑 → ∀𝑥𝜑) ∨ (∃𝑥𝜓 → ∀𝑥𝜓)) → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) |
5 | 1, 4 | impbid2 225 | 1 ⊢ (((∃𝑥𝜑 → ∀𝑥𝜑) ∨ (∃𝑥𝜓 → ∀𝑥𝜓)) → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 846 ∀wal 1532 ∃wex 1774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 df-or 847 df-ex 1775 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |