Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfimexal | Structured version Visualization version GIF version |
Description: A weak from of nonfreeness in either an antecedent or a consequent implies that a universally quantified implication is equivalent to the associated implication where the antecedent is existentially quantified and the consequent is universally quantified. The forward implication always holds (this is 19.38 1842) and the converse implication is the join of instances of bj-alrimg 34727 and bj-exlimg 34731 (see 19.38a 1843 and 19.38b 1844). TODO: prove a version where the antecedents use the nonfreeness quantifier. (Contributed by BJ, 9-Dec-2023.) |
Ref | Expression |
---|---|
bj-nfimexal | ⊢ (((∃𝑥𝜑 → ∀𝑥𝜑) ∨ (∃𝑥𝜓 → ∀𝑥𝜓)) → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.38 1842 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
2 | bj-alrimg 34727 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | |
3 | bj-exlimg 34731 | . . 3 ⊢ ((∃𝑥𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | |
4 | 2, 3 | jaoi 853 | . 2 ⊢ (((∃𝑥𝜑 → ∀𝑥𝜑) ∨ (∃𝑥𝜓 → ∀𝑥𝜓)) → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) |
5 | 1, 4 | impbid2 225 | 1 ⊢ (((∃𝑥𝜑 → ∀𝑥𝜑) ∨ (∃𝑥𝜓 → ∀𝑥𝜓)) → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 843 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |