Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfimexal Structured version   Visualization version   GIF version

Theorem bj-nfimexal 34734
Description: A weak from of nonfreeness in either an antecedent or a consequent implies that a universally quantified implication is equivalent to the associated implication where the antecedent is existentially quantified and the consequent is universally quantified. The forward implication always holds (this is 19.38 1842) and the converse implication is the join of instances of bj-alrimg 34727 and bj-exlimg 34731 (see 19.38a 1843 and 19.38b 1844). TODO: prove a version where the antecedents use the nonfreeness quantifier. (Contributed by BJ, 9-Dec-2023.)
Assertion
Ref Expression
bj-nfimexal (((∃𝑥𝜑 → ∀𝑥𝜑) ∨ (∃𝑥𝜓 → ∀𝑥𝜓)) → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓)))

Proof of Theorem bj-nfimexal
StepHypRef Expression
1 19.38 1842 . 2 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
2 bj-alrimg 34727 . . 3 ((∃𝑥𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)))
3 bj-exlimg 34731 . . 3 ((∃𝑥𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)))
42, 3jaoi 853 . 2 (((∃𝑥𝜑 → ∀𝑥𝜑) ∨ (∃𝑥𝜓 → ∀𝑥𝜓)) → (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)))
51, 4impbid2 225 1 (((∃𝑥𝜑 → ∀𝑥𝜑) ∨ (∃𝑥𝜓 → ∀𝑥𝜓)) → ((∃𝑥𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 843  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator