| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-hbext | Structured version Visualization version GIF version | ||
| Description: Closed form of hbex 2324. (Contributed by BJ, 10-Oct-2019.) |
| Ref | Expression |
|---|---|
| bj-hbext | ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa2 2175 | . . . 4 ⊢ Ⅎ𝑥∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) | |
| 2 | hbnt 2293 | . . . . . 6 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 3 | 2 | alimi 1810 | . . . . 5 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
| 4 | bj-hbalt 36641 | . . . . 5 ⊢ (∀𝑦(¬ 𝜑 → ∀𝑥 ¬ 𝜑) → (∀𝑦 ¬ 𝜑 → ∀𝑥∀𝑦 ¬ 𝜑)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑦 ¬ 𝜑 → ∀𝑥∀𝑦 ¬ 𝜑)) |
| 6 | 1, 5 | alrimi 2212 | . . 3 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥(∀𝑦 ¬ 𝜑 → ∀𝑥∀𝑦 ¬ 𝜑)) |
| 7 | hbnt 2293 | . . 3 ⊢ (∀𝑥(∀𝑦 ¬ 𝜑 → ∀𝑥∀𝑦 ¬ 𝜑) → (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑)) |
| 9 | df-ex 1779 | . . 3 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
| 10 | 9 | bicomi 224 | . 2 ⊢ (¬ ∀𝑦 ¬ 𝜑 ↔ ∃𝑦𝜑) |
| 11 | 10 | albii 1818 | . 2 ⊢ (∀𝑥 ¬ ∀𝑦 ¬ 𝜑 ↔ ∀𝑥∃𝑦𝜑) |
| 12 | 8, 10, 11 | 3imtr3g 295 | 1 ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: bj-nfext 36672 |
| Copyright terms: Public domain | W3C validator |