Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbext Structured version   Visualization version   GIF version

Theorem bj-hbext 34629
Description: Closed form of hbex 2324. (Contributed by BJ, 10-Oct-2019.)
Assertion
Ref Expression
bj-hbext (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑦𝜑 → ∀𝑥𝑦𝜑))

Proof of Theorem bj-hbext
StepHypRef Expression
1 nfa2 2174 . . . 4 𝑥𝑦𝑥(𝜑 → ∀𝑥𝜑)
2 hbnt 2295 . . . . . 6 (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
32alimi 1819 . . . . 5 (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦𝜑 → ∀𝑥 ¬ 𝜑))
4 bj-hbalt 34600 . . . . 5 (∀𝑦𝜑 → ∀𝑥 ¬ 𝜑) → (∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑))
53, 4syl 17 . . . 4 (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑))
61, 5alrimi 2211 . . 3 (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑))
7 hbnt 2295 . . 3 (∀𝑥(∀𝑦 ¬ 𝜑 → ∀𝑥𝑦 ¬ 𝜑) → (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑))
86, 7syl 17 . 2 (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑))
9 df-ex 1788 . . 3 (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑)
109bicomi 227 . 2 (¬ ∀𝑦 ¬ 𝜑 ↔ ∃𝑦𝜑)
1110albii 1827 . 2 (∀𝑥 ¬ ∀𝑦 ¬ 𝜑 ↔ ∀𝑥𝑦𝜑)
128, 10, 113imtr3g 298 1 (∀𝑦𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑦𝜑 → ∀𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1541  wex 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-10 2141  ax-11 2158  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-or 848  df-ex 1788  df-nf 1792
This theorem is referenced by:  bj-nfext  34631
  Copyright terms: Public domain W3C validator