| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-hbyfrbi | Structured version Visualization version GIF version | ||
| Description: Version of bj-hbxfrbi 36631 with existential quantifiers. (Contributed by BJ, 23-Aug-2023.) |
| Ref | Expression |
|---|---|
| bj-hbyfrbi | ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → ((∃𝑥𝜑 → 𝜑) ↔ (∃𝑥𝜓 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbi 1847 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) | |
| 2 | 1 | adantl 481 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → (∃𝑥𝜑 ↔ ∃𝑥𝜓)) |
| 3 | simpl 482 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | imbi12d 344 | 1 ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → ((∃𝑥𝜑 → 𝜑) ↔ (∃𝑥𝜓 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: bj-nnfbi 36726 |
| Copyright terms: Public domain | W3C validator |