Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbyfrbi Structured version   Visualization version   GIF version

Theorem bj-hbyfrbi 34812
Description: Version of bj-hbxfrbi 34811 with existential quantifiers. (Contributed by BJ, 23-Aug-2023.)
Assertion
Ref Expression
bj-hbyfrbi (((𝜑𝜓) ∧ ∀𝑥(𝜑𝜓)) → ((∃𝑥𝜑𝜑) ↔ (∃𝑥𝜓𝜓)))

Proof of Theorem bj-hbyfrbi
StepHypRef Expression
1 exbi 1849 . . 3 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
21adantl 482 . 2 (((𝜑𝜓) ∧ ∀𝑥(𝜑𝜓)) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
3 simpl 483 . 2 (((𝜑𝜓) ∧ ∀𝑥(𝜑𝜓)) → (𝜑𝜓))
42, 3imbi12d 345 1 (((𝜑𝜓) ∧ ∀𝑥(𝜑𝜓)) → ((∃𝑥𝜑𝜑) ↔ (∃𝑥𝜓𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by:  bj-nnfbi  34907
  Copyright terms: Public domain W3C validator