Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-hbxfrbi | Structured version Visualization version GIF version |
Description: Closed form of hbxfrbi 1827. Note: it is less important than nfbiit 1853. The antecedent is in the "strong necessity" modality of modal logic (see also bj-nnftht 34923) in order not to require sp 2176 (modal T). See bj-hbyfrbi 34812 for its version with existential quantifiers. (Contributed by BJ, 6-May-2019.) |
Ref | Expression |
---|---|
bj-hbxfrbi | ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → (𝜑 ↔ 𝜓)) | |
2 | albi 1821 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | |
3 | 2 | adantl 482 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
4 | 1, 3 | imbi12d 345 | 1 ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: bj-nnfbi 34907 |
Copyright terms: Public domain | W3C validator |