| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-hbxfrbi | Structured version Visualization version GIF version | ||
| Description: Closed form of hbxfrbi 1825. Note: it is less important than nfbiit 1851. The antecedent is in the "strong necessity" modality of modal logic (see also bj-nnftht 36764) in order not to require sp 2184 (modal T). See bj-hbyfrbi 36654 for its version with existential quantifiers. (Contributed by BJ, 6-May-2019.) |
| Ref | Expression |
|---|---|
| bj-hbxfrbi | ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → (𝜑 ↔ 𝜓)) | |
| 2 | albi 1818 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | |
| 3 | 2 | adantl 481 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) |
| 4 | 1, 3 | imbi12d 344 | 1 ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bj-nnfbi 36748 |
| Copyright terms: Public domain | W3C validator |