Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbxfrbi Structured version   Visualization version   GIF version

Theorem bj-hbxfrbi 34738
Description: Closed form of hbxfrbi 1828. Note: it is less important than nfbiit 1854. The antecedent is in the "strong necessity" modality of modal logic (see also bj-nnftht 34850) in order not to require sp 2178 (modal T). See bj-hbyfrbi 34739 for its version with existential quantifiers. (Contributed by BJ, 6-May-2019.)
Assertion
Ref Expression
bj-hbxfrbi (((𝜑𝜓) ∧ ∀𝑥(𝜑𝜓)) → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓)))

Proof of Theorem bj-hbxfrbi
StepHypRef Expression
1 simpl 482 . 2 (((𝜑𝜓) ∧ ∀𝑥(𝜑𝜓)) → (𝜑𝜓))
2 albi 1822 . . 3 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
32adantl 481 . 2 (((𝜑𝜓) ∧ ∀𝑥(𝜑𝜓)) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
41, 3imbi12d 344 1 (((𝜑𝜓) ∧ ∀𝑥(𝜑𝜓)) → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  bj-nnfbi  34834
  Copyright terms: Public domain W3C validator