Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpidisj Structured version   Visualization version   GIF version

Theorem bj-inftyexpidisj 35381
Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.)
Assertion
Ref Expression
bj-inftyexpidisj ¬ (+∞ei𝐴) ∈ ℂ

Proof of Theorem bj-inftyexpidisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opeq1 4804 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, ℂ⟩ = ⟨𝐴, ℂ⟩)
2 df-bj-inftyexpi 35378 . . . . 5 +∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
3 opex 5379 . . . . 5 𝐴, ℂ⟩ ∈ V
41, 2, 3fvmpt 6875 . . . 4 (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) = ⟨𝐴, ℂ⟩)
5 opex 5379 . . . . 5 𝑥, ℂ⟩ ∈ V
65, 2dmmpti 6577 . . . 4 dom +∞ei = (-π(,]π)
74, 6eleq2s 2857 . . 3 (𝐴 ∈ dom +∞ei → (+∞ei𝐴) = ⟨𝐴, ℂ⟩)
8 cnex 10952 . . . . . . 7 ℂ ∈ V
98prid2 4699 . . . . . 6 ℂ ∈ {𝐴, ℂ}
10 eqid 2738 . . . . . . . 8 {𝐴, ℂ} = {𝐴, ℂ}
1110olci 863 . . . . . . 7 ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})
12 elopg 5381 . . . . . . . 8 ((𝐴 ∈ V ∧ ℂ ∈ V) → ({𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ↔ ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})))
138, 12mpan2 688 . . . . . . 7 (𝐴 ∈ V → ({𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ↔ ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})))
1411, 13mpbiri 257 . . . . . 6 (𝐴 ∈ V → {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩)
15 en3lp 9372 . . . . . . 7 ¬ (ℂ ∈ {𝐴, ℂ} ∧ {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ∧ ⟨𝐴, ℂ⟩ ∈ ℂ)
1615bj-imn3ani 34769 . . . . . 6 ((ℂ ∈ {𝐴, ℂ} ∧ {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩) → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
179, 14, 16sylancr 587 . . . . 5 (𝐴 ∈ V → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
18 opprc1 4828 . . . . . 6 𝐴 ∈ V → ⟨𝐴, ℂ⟩ = ∅)
19 0ncn 10889 . . . . . . 7 ¬ ∅ ∈ ℂ
20 eleq1 2826 . . . . . . 7 (⟨𝐴, ℂ⟩ = ∅ → (⟨𝐴, ℂ⟩ ∈ ℂ ↔ ∅ ∈ ℂ))
2119, 20mtbiri 327 . . . . . 6 (⟨𝐴, ℂ⟩ = ∅ → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
2218, 21syl 17 . . . . 5 𝐴 ∈ V → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
2317, 22pm2.61i 182 . . . 4 ¬ ⟨𝐴, ℂ⟩ ∈ ℂ
24 eqcom 2745 . . . . . 6 ((+∞ei𝐴) = ⟨𝐴, ℂ⟩ ↔ ⟨𝐴, ℂ⟩ = (+∞ei𝐴))
2524biimpi 215 . . . . 5 ((+∞ei𝐴) = ⟨𝐴, ℂ⟩ → ⟨𝐴, ℂ⟩ = (+∞ei𝐴))
2625eleq1d 2823 . . . 4 ((+∞ei𝐴) = ⟨𝐴, ℂ⟩ → (⟨𝐴, ℂ⟩ ∈ ℂ ↔ (+∞ei𝐴) ∈ ℂ))
2723, 26mtbii 326 . . 3 ((+∞ei𝐴) = ⟨𝐴, ℂ⟩ → ¬ (+∞ei𝐴) ∈ ℂ)
287, 27syl 17 . 2 (𝐴 ∈ dom +∞ei → ¬ (+∞ei𝐴) ∈ ℂ)
29 ndmfv 6804 . . . 4 𝐴 ∈ dom +∞ei → (+∞ei𝐴) = ∅)
3029eleq1d 2823 . . 3 𝐴 ∈ dom +∞ei → ((+∞ei𝐴) ∈ ℂ ↔ ∅ ∈ ℂ))
3119, 30mtbiri 327 . 2 𝐴 ∈ dom +∞ei → ¬ (+∞ei𝐴) ∈ ℂ)
3228, 31pm2.61i 182 1 ¬ (+∞ei𝐴) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wo 844   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  {csn 4561  {cpr 4563  cop 4567  dom cdm 5589  cfv 6433  (class class class)co 7275  cc 10869  -cneg 11206  (,]cioc 13080  πcpi 15776  +∞eicinftyexpi 35377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-cnex 10927
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-c 10877  df-bj-inftyexpi 35378
This theorem is referenced by:  bj-ccinftydisj  35384  bj-pinftynrr  35393  bj-minftynrr  35397
  Copyright terms: Public domain W3C validator