Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpidisj Structured version   Visualization version   GIF version

Theorem bj-inftyexpidisj 37198
Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.)
Assertion
Ref Expression
bj-inftyexpidisj ¬ (+∞ei𝐴) ∈ ℂ

Proof of Theorem bj-inftyexpidisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opeq1 4837 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, ℂ⟩ = ⟨𝐴, ℂ⟩)
2 df-bj-inftyexpi 37195 . . . . 5 +∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
3 opex 5424 . . . . 5 𝐴, ℂ⟩ ∈ V
41, 2, 3fvmpt 6968 . . . 4 (𝐴 ∈ (-π(,]π) → (+∞ei𝐴) = ⟨𝐴, ℂ⟩)
5 opex 5424 . . . . 5 𝑥, ℂ⟩ ∈ V
65, 2dmmpti 6662 . . . 4 dom +∞ei = (-π(,]π)
74, 6eleq2s 2846 . . 3 (𝐴 ∈ dom +∞ei → (+∞ei𝐴) = ⟨𝐴, ℂ⟩)
8 cnex 11149 . . . . . . 7 ℂ ∈ V
98prid2 4727 . . . . . 6 ℂ ∈ {𝐴, ℂ}
10 eqid 2729 . . . . . . . 8 {𝐴, ℂ} = {𝐴, ℂ}
1110olci 866 . . . . . . 7 ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})
12 elopg 5426 . . . . . . . 8 ((𝐴 ∈ V ∧ ℂ ∈ V) → ({𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ↔ ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})))
138, 12mpan2 691 . . . . . . 7 (𝐴 ∈ V → ({𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ↔ ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})))
1411, 13mpbiri 258 . . . . . 6 (𝐴 ∈ V → {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩)
15 en3lp 9567 . . . . . . 7 ¬ (ℂ ∈ {𝐴, ℂ} ∧ {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ∧ ⟨𝐴, ℂ⟩ ∈ ℂ)
1615bj-imn3ani 36575 . . . . . 6 ((ℂ ∈ {𝐴, ℂ} ∧ {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩) → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
179, 14, 16sylancr 587 . . . . 5 (𝐴 ∈ V → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
18 opprc1 4861 . . . . . 6 𝐴 ∈ V → ⟨𝐴, ℂ⟩ = ∅)
19 0ncn 11086 . . . . . . 7 ¬ ∅ ∈ ℂ
20 eleq1 2816 . . . . . . 7 (⟨𝐴, ℂ⟩ = ∅ → (⟨𝐴, ℂ⟩ ∈ ℂ ↔ ∅ ∈ ℂ))
2119, 20mtbiri 327 . . . . . 6 (⟨𝐴, ℂ⟩ = ∅ → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
2218, 21syl 17 . . . . 5 𝐴 ∈ V → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
2317, 22pm2.61i 182 . . . 4 ¬ ⟨𝐴, ℂ⟩ ∈ ℂ
24 eqcom 2736 . . . . . 6 ((+∞ei𝐴) = ⟨𝐴, ℂ⟩ ↔ ⟨𝐴, ℂ⟩ = (+∞ei𝐴))
2524biimpi 216 . . . . 5 ((+∞ei𝐴) = ⟨𝐴, ℂ⟩ → ⟨𝐴, ℂ⟩ = (+∞ei𝐴))
2625eleq1d 2813 . . . 4 ((+∞ei𝐴) = ⟨𝐴, ℂ⟩ → (⟨𝐴, ℂ⟩ ∈ ℂ ↔ (+∞ei𝐴) ∈ ℂ))
2723, 26mtbii 326 . . 3 ((+∞ei𝐴) = ⟨𝐴, ℂ⟩ → ¬ (+∞ei𝐴) ∈ ℂ)
287, 27syl 17 . 2 (𝐴 ∈ dom +∞ei → ¬ (+∞ei𝐴) ∈ ℂ)
29 ndmfv 6893 . . . 4 𝐴 ∈ dom +∞ei → (+∞ei𝐴) = ∅)
3029eleq1d 2813 . . 3 𝐴 ∈ dom +∞ei → ((+∞ei𝐴) ∈ ℂ ↔ ∅ ∈ ℂ))
3119, 30mtbiri 327 . 2 𝐴 ∈ dom +∞ei → ¬ (+∞ei𝐴) ∈ ℂ)
3228, 31pm2.61i 182 1 ¬ (+∞ei𝐴) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  {csn 4589  {cpr 4591  cop 4595  dom cdm 5638  cfv 6511  (class class class)co 7387  cc 11066  -cneg 11406  (,]cioc 13307  πcpi 16032  +∞eicinftyexpi 37194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-cnex 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-c 11074  df-bj-inftyexpi 37195
This theorem is referenced by:  bj-ccinftydisj  37201  bj-pinftynrr  37210  bj-minftynrr  37214
  Copyright terms: Public domain W3C validator