Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfnnfTEMP Structured version   Visualization version   GIF version

Theorem bj-nfnnfTEMP 36724
Description: New nonfreeness is equivalent to old nonfreeness on core FOL axioms plus sp 2184. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1782 except via df-nf 1782 directly. (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nfnnfTEMP (Ⅎ'𝑥𝜑 ↔ Ⅎ𝑥𝜑)

Proof of Theorem bj-nfnnfTEMP
StepHypRef Expression
1 bj-dfnnf3 36723 . 2 (Ⅎ'𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 df-nf 1782 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
31, 2bitr4i 278 1 (Ⅎ'𝑥𝜑 ↔ Ⅎ𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wex 1777  wnf 1781  Ⅎ'wnnf 36689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-bj-nnf 36690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator