![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfnnfTEMP | Structured version Visualization version GIF version |
Description: New nonfreeness is equivalent to old nonfreeness on core FOL axioms plus sp 2171. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1778 except via df-nf 1778 directly. (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nfnnfTEMP | ⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-dfnnf3 36287 | . 2 ⊢ (Ⅎ'𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
2 | df-nf 1778 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 ∃wex 1773 Ⅎwnf 1777 Ⅎ'wnnf 36253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-12 2166 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-nf 1778 df-bj-nnf 36254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |