Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfnnfTEMP Structured version   Visualization version   GIF version

Theorem bj-nfnnfTEMP 36288
Description: New nonfreeness is equivalent to old nonfreeness on core FOL axioms plus sp 2171. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1778 except via df-nf 1778 directly. (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nfnnfTEMP (Ⅎ'𝑥𝜑 ↔ Ⅎ𝑥𝜑)

Proof of Theorem bj-nfnnfTEMP
StepHypRef Expression
1 bj-dfnnf3 36287 . 2 (Ⅎ'𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 df-nf 1778 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
31, 2bitr4i 277 1 (Ⅎ'𝑥𝜑 ↔ Ⅎ𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  wex 1773  wnf 1777  Ⅎ'wnnf 36253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-nf 1778  df-bj-nnf 36254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator