MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf5rd Structured version   Visualization version   GIF version

Theorem nf5rd 2197
Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nf5rd.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nf5rd (𝜑 → (𝜓 → ∀𝑥𝜓))

Proof of Theorem nf5rd
StepHypRef Expression
1 nf5rd.1 . 2 (𝜑 → Ⅎ𝑥𝜓)
2 nf5r 2195 . 2 (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓))
31, 2syl 17 1 (𝜑 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784
This theorem is referenced by:  spimedv  2198  alrimdd  2215  nf5di  2285  hbnt  2294  hbimd  2298  dvelimhw  2343  dveeq2  2376  dveeq1  2378  axc9  2380  spimed  2386  dvelimh  2448  abidnf  3673  eusvnfb  5348  axrepnd  10547  axacndlem4  10563  bj-cbv2v  36786  bj-elgab  36927  wl-nfeqfb  37524
  Copyright terms: Public domain W3C validator