| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5rd | Structured version Visualization version GIF version | ||
| Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nf5rd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nf5rd | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5rd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | nf5r 2195 | . 2 ⊢ (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: spimedv 2198 alrimdd 2215 nf5di 2286 hbnt 2295 hbimd 2299 dvelimhw 2347 dveeq2 2383 dveeq1 2385 axc9 2387 spimed 2393 dvelimh 2455 abidnf 3690 eusvnfb 5368 axrepnd 10613 axacndlem4 10629 bj-cbv2v 36821 bj-elgab 36962 wl-nfeqfb 37559 |
| Copyright terms: Public domain | W3C validator |