Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nf5rd | Structured version Visualization version GIF version |
Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nf5rd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nf5rd | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5rd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
2 | nf5r 2189 | . 2 ⊢ (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: spimedv 2193 alrimdd 2210 nf5di 2285 hbnt 2294 hbimd 2298 dvelimhw 2345 dveeq2 2378 dveeq1 2380 axc9 2382 spimed 2388 dvelimh 2450 abidnf 3633 eusvnfb 5311 axrepnd 10281 axacndlem4 10297 bj-cbv2v 34907 bj-elgab 35054 wl-nfeqfb 35622 |
Copyright terms: Public domain | W3C validator |