| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5rd | Structured version Visualization version GIF version | ||
| Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nf5rd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nf5rd | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5rd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | nf5r 2197 | . 2 ⊢ (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: spimedv 2200 alrimdd 2217 nf5di 2287 hbnt 2296 hbimd 2300 dvelimhw 2345 dveeq2 2378 dveeq1 2380 axc9 2382 spimed 2388 dvelimh 2450 abidnf 3656 eusvnfb 5329 axrepnd 10485 axacndlem4 10501 bj-cbv2v 36842 bj-elgab 36983 wl-nfeqfb 37580 |
| Copyright terms: Public domain | W3C validator |