MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf5rd Structured version   Visualization version   GIF version

Theorem nf5rd 2189
Description: Consequence of the definition of not-free in a context. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nf5rd.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nf5rd (𝜑 → (𝜓 → ∀𝑥𝜓))

Proof of Theorem nf5rd
StepHypRef Expression
1 nf5rd.1 . 2 (𝜑 → Ⅎ𝑥𝜓)
2 nf5r 2187 . 2 (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓))
31, 2syl 17 1 (𝜑 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  spimedv  2190  alrimdd  2207  nf5di  2282  hbnt  2291  hbimd  2295  dvelimhw  2343  dveeq2  2378  dveeq1  2380  axc9  2382  spimed  2388  dvelimh  2450  abidnf  3638  eusvnfb  5316  axrepnd  10350  axacndlem4  10366  bj-cbv2v  34980  bj-elgab  35127  wl-nfeqfb  35695
  Copyright terms: Public domain W3C validator