Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sblem Structured version   Visualization version   GIF version

Theorem bj-sblem 35028
Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
Assertion
Ref Expression
bj-sblem (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜒)))
Distinct variable group:   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem bj-sblem
StepHypRef Expression
1 pm5.74 269 . . . 4 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ↔ (𝜑𝜒)))
21albii 1822 . . 3 (∀𝑥(𝜑 → (𝜓𝜒)) ↔ ∀𝑥((𝜑𝜓) ↔ (𝜑𝜒)))
3 albi 1821 . . 3 (∀𝑥((𝜑𝜓) ↔ (𝜑𝜒)) → (∀𝑥(𝜑𝜓) ↔ ∀𝑥(𝜑𝜒)))
42, 3sylbi 216 . 2 (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥(𝜑𝜓) ↔ ∀𝑥(𝜑𝜒)))
5 19.23v 1945 . 2 (∀𝑥(𝜑𝜒) ↔ (∃𝑥𝜑𝜒))
64, 5bitrdi 287 1 (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  bj-sbievw  35031
  Copyright terms: Public domain W3C validator