| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sbievw | Structured version Visualization version GIF version | ||
| Description: Lemma for substitution. Closed form of equsalvw 2003 and sbievw 2093. (Contributed by BJ, 23-Jul-2023.) |
| Ref | Expression |
|---|---|
| bj-sbievw | ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 2085 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 ↔ 𝜓))) | |
| 2 | bj-sblem 36845 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓))) | |
| 3 | sb6 2085 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 4 | ax6ev 1969 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 5 | 4 | a1bi 362 | . . 3 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) |
| 6 | 2, 3, 5 | 3bitr4g 314 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) → ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |