|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sbievw2 | Structured version Visualization version GIF version | ||
| Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023.) | 
| Ref | Expression | 
|---|---|
| bj-sbievw2 | ⊢ ([𝑦 / 𝑥](𝜓 → 𝜑) → (𝜓 → [𝑦 / 𝑥]𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sb6 2085 | . 2 ⊢ ([𝑦 / 𝑥](𝜓 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜓 → 𝜑))) | |
| 2 | bj-sblem2 36844 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜓 → 𝜑)) → ((∃𝑥 𝑥 = 𝑦 → 𝜓) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 3 | jarr 106 | . . . 4 ⊢ (((∃𝑥 𝑥 = 𝑦 → 𝜓) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (𝜓 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 4 | sb6 2085 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 5 | 3, 4 | imbitrrdi 252 | . . 3 ⊢ (((∃𝑥 𝑥 = 𝑦 → 𝜓) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (𝜓 → [𝑦 / 𝑥]𝜑)) | 
| 6 | 2, 5 | syl 17 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜓 → 𝜑)) → (𝜓 → [𝑦 / 𝑥]𝜑)) | 
| 7 | 1, 6 | sylbi 217 | 1 ⊢ ([𝑦 / 𝑥](𝜓 → 𝜑) → (𝜓 → [𝑦 / 𝑥]𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |