Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-spimt2 Structured version   Visualization version   GIF version

Theorem bj-spimt2 34894
Description: A step in the proof of spimt 2386. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-spimt2 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → ((∃𝑥𝜓𝜓) → (∀𝑥𝜑𝜓)))

Proof of Theorem bj-spimt2
StepHypRef Expression
1 bj-alequex 34893 . . 3 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → ∃𝑥(𝜑𝜓))
2 19.35 1881 . . 3 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
31, 2sylib 217 . 2 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → (∀𝑥𝜑 → ∃𝑥𝜓))
43imim1d 82 1 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → ((∃𝑥𝜓𝜓) → (∀𝑥𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  bj-cbv3ta  34895
  Copyright terms: Public domain W3C validator