Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-spimt2 Structured version   Visualization version   GIF version

Theorem bj-spimt2 34223
 Description: A step in the proof of spimt 2396. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-spimt2 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → ((∃𝑥𝜓𝜓) → (∀𝑥𝜑𝜓)))

Proof of Theorem bj-spimt2
StepHypRef Expression
1 bj-alequex 34222 . . 3 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → ∃𝑥(𝜑𝜓))
2 19.35 1878 . . 3 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
31, 2sylib 221 . 2 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → (∀𝑥𝜑 → ∃𝑥𝜓))
43imim1d 82 1 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → ((∃𝑥𝜓𝜓) → (∀𝑥𝜑𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1536  ∃wex 1781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-12 2176  ax-13 2382 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782 This theorem is referenced by:  bj-cbv3ta  34224
 Copyright terms: Public domain W3C validator