Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spimt | Structured version Visualization version GIF version |
Description: Closed theorem form of spim 2386. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 21-Mar-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
spimt | ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6e 2382 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
2 | exim 1841 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝜑 → 𝜓))) | |
3 | 1, 2 | mpi 20 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ∃𝑥(𝜑 → 𝜓)) |
4 | 19.35 1885 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
5 | 3, 4 | sylib 221 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
6 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥𝜓) | |
7 | 6 | 19.9d 2201 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∃𝑥𝜓 → 𝜓)) |
8 | 5, 7 | sylan9r 512 | 1 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∀wal 1541 ∃wex 1787 Ⅎwnf 1791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-12 2175 ax-13 2371 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-nf 1792 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |