| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spimt | Structured version Visualization version GIF version | ||
| Description: Closed theorem form of spim 2392. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 21-Mar-2023.) Usage of this theorem is discouraged because it depends on ax-13 2377. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spimt | ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6e 2388 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 2 | exim 1834 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝜑 → 𝜓))) | |
| 3 | 1, 2 | mpi 20 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ∃𝑥(𝜑 → 𝜓)) |
| 4 | 19.35 1877 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 5 | 3, 4 | sylib 218 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
| 6 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥𝜓) | |
| 7 | 6 | 19.9d 2203 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∃𝑥𝜓 → 𝜓)) |
| 8 | 5, 7 | sylan9r 508 | 1 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |