Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imim1d | Structured version Visualization version GIF version |
Description: Deduction adding nested consequents. Deduction associated with imim1 83 and imim1i 63. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2012.) |
Ref | Expression |
---|---|
imim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imim1d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | imim12d 81 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1 83 expt 177 imbi1d 341 meredith 1642 ax13b 2034 ax12v2 2172 axc15 2421 mo3 2563 mo4 2565 2mo 2649 sstr2 3937 ssralv 3996 axprlem1 5359 axprlem2 5360 axpr 5364 frss 5572 fvn0ssdmfun 6989 tfi 7742 nneneq 9049 nneneqOLD 9061 wemaplem2 9374 unxpwdom2 9415 cantnfp1lem3 9506 infxpenlem 9839 axpowndlem3 10425 indpi 10733 fzind 12488 injresinj 13578 seqcl2 13811 seqfveq2 13815 seqshft2 13819 monoord 13823 seqsplit 13826 seqid2 13839 seqhomo 13840 seqcoll 14247 rexuzre 15133 rexico 15134 limsupbnd2 15261 rlim2lt 15275 rlim3 15276 lo1le 15432 caurcvg 15457 lcmfunsnlem1 16409 coprmprod 16433 eulerthlem2 16550 ramtlecl 16768 sylow1lem1 19270 efgsrel 19407 elcls3 22305 cncls2 22495 cnntr 22497 filssufilg 23133 ufileu 23141 alexsubALTlem3 23271 tgpt0 23341 isucn2 23502 imasdsf1olem 23597 nmoleub2lem2 24350 ovolicc2lem3 24754 dyadmbllem 24834 dvnres 25166 rlimcnp 26186 xrlimcnp 26189 ftalem2 26294 bcmono 26496 2sqlem6 26642 eupth2lems 28710 mdslmd1lem1 30795 xrge0infss 31191 subfacp1lem6 33253 cvmliftlem7 33359 cvmliftlem10 33362 ss2mcls 33636 mclsax 33637 bj-sylget 34863 bj-nfimt 34880 bj-19.21t 35012 bj-19.37im 35015 bj-spimt2 35028 mettrifi 35975 diaintclN 39284 dibintclN 39393 dihintcl 39570 mapdh9a 40015 fltaccoprm 40687 fltabcoprm 40689 flt4lem5 40697 iunrelexp0 41538 mnuop3d 42117 imbi12VD 42721 monoordxrv 43265 fcoresf1 44822 rexrsb 44851 smonoord 45082 ply1mulgsumlem1 45986 setrec1lem2 46653 natlocalincr 46770 |
Copyright terms: Public domain | W3C validator |