Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imim1d | Structured version Visualization version GIF version |
Description: Deduction adding nested consequents. Deduction associated with imim1 83 and imim1i 63. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2012.) |
Ref | Expression |
---|---|
imim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imim1d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | imim12d 81 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1 83 expt 177 imbi1d 342 meredith 1644 ax13b 2036 ax12v2 2174 axc15 2423 mo3 2565 mo4 2567 2mo 2651 sstr2 3929 ssralv 3988 axprlem1 5347 axprlem2 5348 axpr 5352 frss 5557 fvn0ssdmfun 6961 tfi 7709 nneneq 9001 nneneqOLD 9013 wemaplem2 9315 unxpwdom2 9356 cantnfp1lem3 9447 infxpenlem 9778 axpowndlem3 10364 indpi 10672 fzind 12427 injresinj 13517 seqcl2 13750 seqfveq2 13754 seqshft2 13758 monoord 13762 seqsplit 13765 seqid2 13778 seqhomo 13779 seqcoll 14187 rexuzre 15073 rexico 15074 limsupbnd2 15201 rlim2lt 15215 rlim3 15216 lo1le 15372 caurcvg 15397 lcmfunsnlem1 16351 coprmprod 16375 eulerthlem2 16492 ramtlecl 16710 sylow1lem1 19212 efgsrel 19349 elcls3 22243 cncls2 22433 cnntr 22435 filssufilg 23071 ufileu 23079 alexsubALTlem3 23209 tgpt0 23279 isucn2 23440 imasdsf1olem 23535 nmoleub2lem2 24288 ovolicc2lem3 24692 dyadmbllem 24772 dvnres 25104 rlimcnp 26124 xrlimcnp 26127 ftalem2 26232 bcmono 26434 2sqlem6 26580 eupth2lems 28611 mdslmd1lem1 30696 xrge0infss 31092 subfacp1lem6 33156 cvmliftlem7 33262 cvmliftlem10 33265 ss2mcls 33539 mclsax 33540 bj-sylget 34811 bj-nfimt 34828 bj-19.21t 34960 bj-19.37im 34963 bj-spimt2 34976 mettrifi 35924 diaintclN 39079 dibintclN 39188 dihintcl 39365 mapdh9a 39810 fltaccoprm 40484 fltabcoprm 40486 flt4lem5 40494 iunrelexp0 41317 mnuop3d 41896 imbi12VD 42500 monoordxrv 43029 fcoresf1 44574 rexrsb 44603 smonoord 44834 ply1mulgsumlem1 45738 setrec1lem2 46405 natlocalincr 46522 |
Copyright terms: Public domain | W3C validator |