Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imim1d | Structured version Visualization version GIF version |
Description: Deduction adding nested consequents. Deduction associated with imim1 83 and imim1i 63. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2012.) |
Ref | Expression |
---|---|
imim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imim1d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | imim12d 81 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1 83 expt 177 imbi1d 341 meredith 1645 ax13b 2036 ax12v2 2175 axc15 2422 mo3 2564 mo4 2566 2mo 2650 sstr2 3924 ssralv 3983 axprlem1 5341 axprlem2 5342 axpr 5346 frss 5547 fvn0ssdmfun 6934 tfi 7675 nneneq 8896 wemaplem2 9236 unxpwdom2 9277 cantnfp1lem3 9368 infxpenlem 9700 axpowndlem3 10286 indpi 10594 fzind 12348 injresinj 13436 seqcl2 13669 seqfveq2 13673 seqshft2 13677 monoord 13681 seqsplit 13684 seqid2 13697 seqhomo 13698 seqcoll 14106 rexuzre 14992 rexico 14993 limsupbnd2 15120 rlim2lt 15134 rlim3 15135 lo1le 15291 caurcvg 15316 lcmfunsnlem1 16270 coprmprod 16294 eulerthlem2 16411 ramtlecl 16629 sylow1lem1 19118 efgsrel 19255 elcls3 22142 cncls2 22332 cnntr 22334 filssufilg 22970 ufileu 22978 alexsubALTlem3 23108 tgpt0 23178 isucn2 23339 imasdsf1olem 23434 nmoleub2lem2 24185 ovolicc2lem3 24588 dyadmbllem 24668 dvnres 25000 rlimcnp 26020 xrlimcnp 26023 ftalem2 26128 bcmono 26330 2sqlem6 26476 eupth2lems 28503 mdslmd1lem1 30588 xrge0infss 30985 subfacp1lem6 33047 cvmliftlem7 33153 cvmliftlem10 33156 ss2mcls 33430 mclsax 33431 bj-sylget 34729 bj-nfimt 34746 bj-19.21t 34878 bj-19.37im 34881 bj-spimt2 34894 mettrifi 35842 diaintclN 38999 dibintclN 39108 dihintcl 39285 mapdh9a 39730 fltaccoprm 40393 fltabcoprm 40395 flt4lem5 40403 iunrelexp0 41199 mnuop3d 41778 imbi12VD 42382 monoordxrv 42912 fcoresf1 44450 rexrsb 44479 smonoord 44711 ply1mulgsumlem1 45615 setrec1lem2 46280 |
Copyright terms: Public domain | W3C validator |