Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-spst Structured version   Visualization version   GIF version

Theorem bj-spst 34871
Description: Closed form of sps 2178. Once in main part, prove sps 2178 and spsd 2180 from it. (Contributed by BJ, 20-Oct-2019.)
Assertion
Ref Expression
bj-spst ((𝜑𝜓) → (∀𝑥𝜑𝜓))

Proof of Theorem bj-spst
StepHypRef Expression
1 sp 2176 . 2 (∀𝑥𝜑𝜑)
21imim1i 63 1 ((𝜑𝜓) → (∀𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator