| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-modalbe | Structured version Visualization version GIF version | ||
| Description: The predicate-calculus version of the axiom (B) of modal logic. See also modal-b 2319. (Contributed by BJ, 20-Oct-2019.) |
| Ref | Expression |
|---|---|
| bj-modalbe | ⊢ (𝜑 → ∀𝑥∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modal-b 2319 | . 2 ⊢ (𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | df-ex 1780 | . . 3 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 → ∃𝑥𝜑) |
| 4 | 1, 3 | sylg 1823 | 1 ⊢ (𝜑 → ∀𝑥∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: bj-modal4 36715 bj-19.12 36762 |
| Copyright terms: Public domain | W3C validator |