Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-modalbe Structured version   Visualization version   GIF version

Theorem bj-modalbe 34772
Description: The predicate-calculus version of the axiom (B) of modal logic. See also modal-b 2320. (Contributed by BJ, 20-Oct-2019.)
Assertion
Ref Expression
bj-modalbe (𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem bj-modalbe
StepHypRef Expression
1 modal-b 2320 . 2 (𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑)
2 df-ex 1788 . . 3 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
32biimpri 231 . 2 (¬ ∀𝑥 ¬ 𝜑 → ∃𝑥𝜑)
41, 3sylg 1830 1 (𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1541  wex 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-10 2143  ax-12 2177
This theorem depends on definitions:  df-bi 210  df-ex 1788
This theorem is referenced by:  bj-modal4  34798  bj-19.12  34845
  Copyright terms: Public domain W3C validator