Step | Hyp | Ref
| Expression |
1 | | df-sb 2071 |
. 2
⊢ ([𝑡 / 𝑥]𝑦 = 𝑧 ↔ ∀𝑢(𝑢 = 𝑡 → ∀𝑥(𝑥 = 𝑢 → 𝑦 = 𝑧))) |
2 | | 19.23v 1950 |
. . . . . 6
⊢
(∀𝑥(𝑥 = 𝑢 → 𝑦 = 𝑧) ↔ (∃𝑥 𝑥 = 𝑢 → 𝑦 = 𝑧)) |
3 | | ax6ev 1978 |
. . . . . . . 8
⊢
∃𝑥 𝑥 = 𝑢 |
4 | | pm2.27 42 |
. . . . . . . 8
⊢
(∃𝑥 𝑥 = 𝑢 → ((∃𝑥 𝑥 = 𝑢 → 𝑦 = 𝑧) → 𝑦 = 𝑧)) |
5 | 3, 4 | ax-mp 5 |
. . . . . . 7
⊢
((∃𝑥 𝑥 = 𝑢 → 𝑦 = 𝑧) → 𝑦 = 𝑧) |
6 | | ax-1 6 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (∃𝑥 𝑥 = 𝑢 → 𝑦 = 𝑧)) |
7 | 5, 6 | impbii 212 |
. . . . . 6
⊢
((∃𝑥 𝑥 = 𝑢 → 𝑦 = 𝑧) ↔ 𝑦 = 𝑧) |
8 | 2, 7 | bitri 278 |
. . . . 5
⊢
(∀𝑥(𝑥 = 𝑢 → 𝑦 = 𝑧) ↔ 𝑦 = 𝑧) |
9 | 8 | imbi2i 339 |
. . . 4
⊢ ((𝑢 = 𝑡 → ∀𝑥(𝑥 = 𝑢 → 𝑦 = 𝑧)) ↔ (𝑢 = 𝑡 → 𝑦 = 𝑧)) |
10 | 9 | albii 1827 |
. . 3
⊢
(∀𝑢(𝑢 = 𝑡 → ∀𝑥(𝑥 = 𝑢 → 𝑦 = 𝑧)) ↔ ∀𝑢(𝑢 = 𝑡 → 𝑦 = 𝑧)) |
11 | | 19.23v 1950 |
. . . 4
⊢
(∀𝑢(𝑢 = 𝑡 → 𝑦 = 𝑧) ↔ (∃𝑢 𝑢 = 𝑡 → 𝑦 = 𝑧)) |
12 | | ax6ev 1978 |
. . . . . 6
⊢
∃𝑢 𝑢 = 𝑡 |
13 | | pm2.27 42 |
. . . . . 6
⊢
(∃𝑢 𝑢 = 𝑡 → ((∃𝑢 𝑢 = 𝑡 → 𝑦 = 𝑧) → 𝑦 = 𝑧)) |
14 | 12, 13 | ax-mp 5 |
. . . . 5
⊢
((∃𝑢 𝑢 = 𝑡 → 𝑦 = 𝑧) → 𝑦 = 𝑧) |
15 | | ax-1 6 |
. . . . 5
⊢ (𝑦 = 𝑧 → (∃𝑢 𝑢 = 𝑡 → 𝑦 = 𝑧)) |
16 | 14, 15 | impbii 212 |
. . . 4
⊢
((∃𝑢 𝑢 = 𝑡 → 𝑦 = 𝑧) ↔ 𝑦 = 𝑧) |
17 | 11, 16 | bitri 278 |
. . 3
⊢
(∀𝑢(𝑢 = 𝑡 → 𝑦 = 𝑧) ↔ 𝑦 = 𝑧) |
18 | 10, 17 | bitri 278 |
. 2
⊢
(∀𝑢(𝑢 = 𝑡 → ∀𝑥(𝑥 = 𝑢 → 𝑦 = 𝑧)) ↔ 𝑦 = 𝑧) |
19 | 1, 18 | bitri 278 |
1
⊢ ([𝑡 / 𝑥]𝑦 = 𝑧 ↔ 𝑦 = 𝑧) |