Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssblem1 Structured version   Visualization version   GIF version

Theorem bj-ssblem1 34835
Description: A lemma for the definiens of df-sb 2068. An instance of sp 2176 proved without it. Note: it has a common subproof with sbjust 2066. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ssblem1 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable groups:   𝑥,𝑦   𝑦,𝑡   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑡)

Proof of Theorem bj-ssblem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 equequ1 2028 . . 3 (𝑦 = 𝑧 → (𝑦 = 𝑡𝑧 = 𝑡))
2 equequ2 2029 . . . . 5 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
32imbi1d 342 . . . 4 (𝑦 = 𝑧 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑧𝜑)))
43albidv 1923 . . 3 (𝑦 = 𝑧 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑧𝜑)))
51, 4imbi12d 345 . 2 (𝑦 = 𝑧 → ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ (𝑧 = 𝑡 → ∀𝑥(𝑥 = 𝑧𝜑))))
65spw 2037 1 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator