| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-substw | Structured version Visualization version GIF version | ||
| Description: Weak form of the LHS of bj-substax12 36722 proved from the core axiom schemes. Compare ax12w 2133. (Contributed by BJ, 26-May-2024.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-substw.is | ⊢ (𝑥 = 𝑡 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| bj-substw | ⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-substw.is | . . . . 5 ⊢ (𝑥 = 𝑡 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . . . 4 ⊢ ((𝑥 = 𝑡 ∧ 𝜑) ↔ (𝑥 = 𝑡 ∧ 𝜓)) |
| 3 | 2 | exbii 1848 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝑡 ∧ 𝜓)) |
| 4 | 19.41v 1949 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜓) ↔ (∃𝑥 𝑥 = 𝑡 ∧ 𝜓)) | |
| 5 | 3, 4 | bitri 275 | . 2 ⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) ↔ (∃𝑥 𝑥 = 𝑡 ∧ 𝜓)) |
| 6 | 1 | biimprcd 250 | . . 3 ⊢ (𝜓 → (𝑥 = 𝑡 → 𝜑)) |
| 7 | 6 | alrimiv 1927 | . 2 ⊢ (𝜓 → ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| 8 | 5, 7 | simplbiim 504 | 1 ⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |