Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-substw Structured version   Visualization version   GIF version

Theorem bj-substw 34904
Description: Weak form of the LHS of bj-substax12 34903 proved from the core axiom schemes. Compare ax12w 2129. (Contributed by BJ, 26-May-2024.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-substw.is (𝑥 = 𝑡 → (𝜑𝜓))
Assertion
Ref Expression
bj-substw (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑡)   𝜓(𝑡)

Proof of Theorem bj-substw
StepHypRef Expression
1 bj-substw.is . . . . 5 (𝑥 = 𝑡 → (𝜑𝜓))
21pm5.32i 575 . . . 4 ((𝑥 = 𝑡𝜑) ↔ (𝑥 = 𝑡𝜓))
32exbii 1850 . . 3 (∃𝑥(𝑥 = 𝑡𝜑) ↔ ∃𝑥(𝑥 = 𝑡𝜓))
4 19.41v 1953 . . 3 (∃𝑥(𝑥 = 𝑡𝜓) ↔ (∃𝑥 𝑥 = 𝑡𝜓))
53, 4bitri 274 . 2 (∃𝑥(𝑥 = 𝑡𝜑) ↔ (∃𝑥 𝑥 = 𝑡𝜓))
61biimprcd 249 . . 3 (𝜓 → (𝑥 = 𝑡𝜑))
76alrimiv 1930 . 2 (𝜓 → ∀𝑥(𝑥 = 𝑡𝜑))
85, 7simplbiim 505 1 (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator