MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.41v Structured version   Visualization version   GIF version

Theorem 19.41v 1953
Description: Version of 19.41 2228 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1971. (Revised by Rohan Ridenour, 15-Apr-2022.)
Assertion
Ref Expression
19.41v (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.41v
StepHypRef Expression
1 19.40 1889 . . 3 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
2 ax5e 1915 . . . 4 (∃𝑥𝜓𝜓)
32anim2i 617 . . 3 ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑𝜓))
41, 3syl 17 . 2 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑𝜓))
5 pm3.21 472 . . . 4 (𝜓 → (𝜑 → (𝜑𝜓)))
65eximdv 1920 . . 3 (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
76impcom 408 . 2 ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓))
84, 7impbii 208 1 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782
This theorem is referenced by:  19.41vv  1954  19.41vvv  1955  19.41vvvv  1956  19.42v  1957  exdistrv  1959  r19.41v  3188  gencbvex  3535  euxfrw  3717  euxfr  3719  euind  3720  dfdif3  4114  zfpair  5419  opabn0  5553  eliunxp  5837  relop  5850  dmuni  5914  dminss  6152  imainss  6153  cnvresima  6229  rnco  6251  coass  6264  xpco  6288  rnoprab  7514  eloprabga  7518  f11o  7935  frxp  8114  omeu  8587  domen  8959  xpassen  9068  dif1enOLD  9164  enfii  9191  ttrclselem2  9723  kmlem3  10149  cflem  10243  genpass  11006  ltexprlem4  11036  hasheqf1oi  14315  elwspths2spth  29476  bnj534  34036  bnj906  34227  bnj908  34228  bnj916  34230  bnj983  34248  bnj986  34252  fmla0  34659  fmlasuc0  34661  dftr6  35013  bj-eeanvw  35894  bj-substw  35903  bj-csbsnlem  36086  bj-clel3gALT  36232  bj-rest10  36272  bj-restuni  36281  bj-imdirco  36374  bj-ccinftydisj  36397  wl-dfclab  36761  eldmqsres2  37459  disjdmqscossss  37976  prter2  38054  dihglb2  40516  prjspeclsp  41656  pm11.6  43453  pm11.71  43458  rfcnnnub  44022  eliunxp2  47098  thinccic  47769
  Copyright terms: Public domain W3C validator