Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.41v | Structured version Visualization version GIF version |
Description: Version of 19.41 2228 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1971. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1889 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
2 | ax5e 1915 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) | |
3 | 2 | anim2i 618 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
5 | pm3.21 473 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
6 | 5 | eximdv 1920 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
7 | 6 | impcom 409 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
8 | 4, 7 | impbii 208 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1782 |
This theorem is referenced by: 19.41vv 1954 19.41vvv 1955 19.41vvvv 1956 19.42v 1957 exdistrv 1959 r19.41v 3182 gencbvex 3500 euxfrw 3670 euxfr 3672 euind 3673 dfdif3 4065 zfpair 5368 opabn0 5501 eliunxp 5783 relop 5796 dmuni 5860 dminss 6095 imainss 6096 cnvresima 6172 rnco 6194 coass 6207 xpco 6231 rnoprab 7444 eloprabga 7448 f11o 7861 frxp 8038 omeu 8491 domen 8826 xpassen 8935 dif1enOLD 9031 enfii 9058 ttrclselem2 9587 kmlem3 10013 cflem 10107 genpass 10870 ltexprlem4 10900 hasheqf1oi 14170 elwspths2spth 28619 bnj534 33016 bnj906 33207 bnj908 33208 bnj916 33210 bnj983 33228 bnj986 33232 fmla0 33641 fmlasuc0 33643 dftr6 34007 bj-eeanvw 35032 bj-substw 35041 bj-csbsnlem 35224 bj-clel3gALT 35373 bj-rest10 35413 bj-restuni 35422 bj-imdirco 35515 bj-ccinftydisj 35538 wl-dfclab 35903 eldmqsres2 36604 disjdmqscossss 37121 prter2 37199 dihglb2 39661 prjspeclsp 40762 pm11.6 42383 pm11.71 42388 rfcnnnub 42952 eliunxp2 46087 thinccic 46760 |
Copyright terms: Public domain | W3C validator |