![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.41v | Structured version Visualization version GIF version |
Description: Version of 19.41 2232 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1964. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1883 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
2 | ax5e 1909 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) | |
3 | 2 | anim2i 617 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
5 | pm3.21 471 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
6 | 5 | eximdv 1914 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
7 | 6 | impcom 407 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
8 | 4, 7 | impbii 209 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 |
This theorem is referenced by: 19.41vv 1947 19.41vvv 1948 19.41vvvv 1949 19.42v 1950 exdistrv 1952 r19.41v 3186 gencbvex 3540 euxfrw 3729 euxfr 3731 euind 3732 dfdif3OLD 4127 zfpair 5426 opabn0 5562 eliunxp 5850 relop 5863 dmuni 5927 dminss 6174 imainss 6175 cnvresima 6251 rnco 6273 coass 6286 xpco 6310 rnoprab 7536 eloprabga 7540 f11o 7969 frxp 8149 omeu 8621 domen 9000 xpassen 9104 dif1enOLD 9200 enfii 9223 ttrclselem2 9763 kmlem3 10190 cflem 10282 cflemOLD 10283 genpass 11046 ltexprlem4 11076 hasheqf1oi 14386 elwspths2spth 29996 bnj534 34731 bnj906 34922 bnj908 34923 bnj916 34925 bnj983 34943 bnj986 34947 fmla0 35366 fmlasuc0 35368 rexxfr3dALT 35623 dftr6 35730 bj-eeanvw 36695 bj-substw 36704 bj-csbsnlem 36885 bj-clel3gALT 37030 bj-rest10 37070 bj-restuni 37079 bj-imdirco 37172 bj-ccinftydisj 37195 wl-dfclab 37576 eldmqsres2 38269 disjdmqscossss 38784 prter2 38862 dihglb2 41324 prjspeclsp 42598 pm11.6 44387 pm11.71 44392 rfcnnnub 44973 eliunxp2 48178 thinccic 48861 |
Copyright terms: Public domain | W3C validator |