MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.41v Structured version   Visualization version   GIF version

Theorem 19.41v 1949
Description: Version of 19.41 2236 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1967. (Revised by Rohan Ridenour, 15-Apr-2022.)
Assertion
Ref Expression
19.41v (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem 19.41v
StepHypRef Expression
1 19.40 1886 . . 3 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
2 ax5e 1912 . . . 4 (∃𝑥𝜓𝜓)
32anim2i 617 . . 3 ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑𝜓))
41, 3syl 17 . 2 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑𝜓))
5 pm3.21 471 . . . 4 (𝜓 → (𝜑 → (𝜑𝜓)))
65eximdv 1917 . . 3 (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
76impcom 407 . 2 ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓))
84, 7impbii 209 1 (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by:  19.41vv  1950  19.41vvv  1951  19.41vvvv  1952  19.42v  1953  exdistrv  1955  r19.41v  3167  gencbvex  3507  euxfrw  3692  euxfr  3694  euind  3695  dfdif3OLD  4081  zfpair  5376  opabn0  5513  eliunxp  5801  relop  5814  dmuni  5878  dminss  6126  imainss  6127  cnvresima  6203  rnco  6225  coass  6238  xpco  6262  rnoprab  7494  eloprabga  7498  f11o  7925  frxp  8105  omeu  8549  domen  8933  xpassen  9035  dif1enOLD  9126  enfii  9150  ttrclselem2  9679  kmlem3  10106  cflem  10198  cflemOLD  10199  genpass  10962  ltexprlem4  10992  hasheqf1oi  14316  elwspths2spth  29897  bnj534  34729  bnj906  34920  bnj908  34921  bnj916  34923  bnj983  34941  bnj986  34945  fmla0  35369  fmlasuc0  35371  rexxfr3dALT  35626  dftr6  35738  bj-eeanvw  36701  bj-substw  36710  bj-csbsnlem  36891  bj-clel3gALT  37036  bj-rest10  37076  bj-restuni  37085  bj-imdirco  37178  bj-ccinftydisj  37201  wl-dfclab  37584  eldmqsres2  38276  disjdmqscossss  38795  prter2  38874  dihglb2  41336  prjspeclsp  42600  pm11.6  44381  pm11.71  44386  rfcnnnub  45030  eliunxp2  48322  thinccic  49460
  Copyright terms: Public domain W3C validator