![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.41v | Structured version Visualization version GIF version |
Description: Version of 19.41 2236 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1967. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1885 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
2 | ax5e 1911 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) | |
3 | 2 | anim2i 616 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
5 | pm3.21 471 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
6 | 5 | eximdv 1916 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
7 | 6 | impcom 407 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
8 | 4, 7 | impbii 209 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: 19.41vv 1950 19.41vvv 1951 19.41vvvv 1952 19.42v 1953 exdistrv 1955 r19.41v 3195 gencbvex 3553 euxfrw 3743 euxfr 3745 euind 3746 dfdif3OLD 4141 zfpair 5439 opabn0 5572 eliunxp 5862 relop 5875 dmuni 5939 dminss 6184 imainss 6185 cnvresima 6261 rnco 6283 coass 6296 xpco 6320 rnoprab 7554 eloprabga 7558 f11o 7987 frxp 8167 omeu 8641 domen 9021 xpassen 9132 dif1enOLD 9228 enfii 9252 ttrclselem2 9795 kmlem3 10222 cflem 10314 cflemOLD 10315 genpass 11078 ltexprlem4 11108 hasheqf1oi 14400 elwspths2spth 30000 bnj534 34715 bnj906 34906 bnj908 34907 bnj916 34909 bnj983 34927 bnj986 34931 fmla0 35350 fmlasuc0 35352 rexxfr3dALT 35607 dftr6 35713 bj-eeanvw 36679 bj-substw 36688 bj-csbsnlem 36869 bj-clel3gALT 37014 bj-rest10 37054 bj-restuni 37063 bj-imdirco 37156 bj-ccinftydisj 37179 wl-dfclab 37550 eldmqsres2 38244 disjdmqscossss 38759 prter2 38837 dihglb2 41299 prjspeclsp 42567 pm11.6 44361 pm11.71 44366 rfcnnnub 44936 eliunxp2 48058 thinccic 48728 |
Copyright terms: Public domain | W3C validator |