![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.41v | Structured version Visualization version GIF version |
Description: Version of 19.41 2228 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1971. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1889 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
2 | ax5e 1915 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) | |
3 | 2 | anim2i 617 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
5 | pm3.21 472 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
6 | 5 | eximdv 1920 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
7 | 6 | impcom 408 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
8 | 4, 7 | impbii 208 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 |
This theorem is referenced by: 19.41vv 1954 19.41vvv 1955 19.41vvvv 1956 19.42v 1957 exdistrv 1959 r19.41v 3188 gencbvex 3535 euxfrw 3717 euxfr 3719 euind 3720 dfdif3 4114 zfpair 5419 opabn0 5553 eliunxp 5837 relop 5850 dmuni 5914 dminss 6152 imainss 6153 cnvresima 6229 rnco 6251 coass 6264 xpco 6288 rnoprab 7514 eloprabga 7518 f11o 7935 frxp 8114 omeu 8587 domen 8959 xpassen 9068 dif1enOLD 9164 enfii 9191 ttrclselem2 9723 kmlem3 10149 cflem 10243 genpass 11006 ltexprlem4 11036 hasheqf1oi 14315 elwspths2spth 29476 bnj534 34036 bnj906 34227 bnj908 34228 bnj916 34230 bnj983 34248 bnj986 34252 fmla0 34659 fmlasuc0 34661 dftr6 35013 bj-eeanvw 35894 bj-substw 35903 bj-csbsnlem 36086 bj-clel3gALT 36232 bj-rest10 36272 bj-restuni 36281 bj-imdirco 36374 bj-ccinftydisj 36397 wl-dfclab 36761 eldmqsres2 37459 disjdmqscossss 37976 prter2 38054 dihglb2 40516 prjspeclsp 41656 pm11.6 43453 pm11.71 43458 rfcnnnub 44022 eliunxp2 47098 thinccic 47769 |
Copyright terms: Public domain | W3C validator |