![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.41v | Structured version Visualization version GIF version |
Description: Version of 19.41 2228 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1971. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1889 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
2 | ax5e 1915 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) | |
3 | 2 | anim2i 617 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
5 | pm3.21 472 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
6 | 5 | eximdv 1920 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
7 | 6 | impcom 408 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
8 | 4, 7 | impbii 208 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 |
This theorem is referenced by: 19.41vv 1954 19.41vvv 1955 19.41vvvv 1956 19.42v 1957 exdistrv 1959 r19.41v 3188 gencbvex 3535 euxfrw 3717 euxfr 3719 euind 3720 dfdif3 4114 zfpair 5419 opabn0 5553 eliunxp 5837 relop 5850 dmuni 5914 dminss 6152 imainss 6153 cnvresima 6229 rnco 6251 coass 6264 xpco 6288 rnoprab 7511 eloprabga 7515 f11o 7932 frxp 8111 omeu 8584 domen 8956 xpassen 9065 dif1enOLD 9161 enfii 9188 ttrclselem2 9720 kmlem3 10146 cflem 10240 genpass 11003 ltexprlem4 11033 hasheqf1oi 14310 elwspths2spth 29218 bnj534 33745 bnj906 33936 bnj908 33937 bnj916 33939 bnj983 33957 bnj986 33961 fmla0 34368 fmlasuc0 34370 dftr6 34716 bj-eeanvw 35586 bj-substw 35595 bj-csbsnlem 35778 bj-clel3gALT 35924 bj-rest10 35964 bj-restuni 35973 bj-imdirco 36066 bj-ccinftydisj 36089 wl-dfclab 36453 eldmqsres2 37151 disjdmqscossss 37668 prter2 37746 dihglb2 40208 prjspeclsp 41355 pm11.6 43141 pm11.71 43146 rfcnnnub 43710 eliunxp2 46999 thinccic 47671 |
Copyright terms: Public domain | W3C validator |