Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.41v | Structured version Visualization version GIF version |
Description: Version of 19.41 2231 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1972. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1890 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
2 | ax5e 1916 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) | |
3 | 2 | anim2i 616 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
5 | pm3.21 471 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
6 | 5 | eximdv 1921 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
7 | 6 | impcom 407 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
8 | 4, 7 | impbii 208 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: 19.41vv 1955 19.41vvv 1956 19.41vvvv 1957 19.42v 1958 exdistrv 1960 r19.41v 3273 gencbvex 3478 euxfrw 3651 euxfr 3653 euind 3654 dfdif3 4045 zfpair 5339 opabn0 5459 eliunxp 5735 relop 5748 dmuni 5812 dminss 6045 imainss 6046 cnvresima 6122 rnco 6145 coass 6158 xpco 6181 rnoprab 7356 eloprabga 7360 f11o 7763 frxp 7938 omeu 8378 domen 8706 xpassen 8806 dif1en 8907 enfii 8932 kmlem3 9839 cflem 9933 genpass 10696 ltexprlem4 10726 hasheqf1oi 13994 elwspths2spth 28233 bnj534 32619 bnj906 32810 bnj908 32811 bnj916 32813 bnj983 32831 bnj986 32835 fmla0 33244 fmlasuc0 33246 dftr6 33624 ttrclselem2 33712 bj-eeanvw 34822 bj-substw 34831 bj-csbsnlem 35015 bj-clel3gALT 35148 bj-rest10 35186 bj-restuni 35195 bj-imdirco 35288 bj-ccinftydisj 35311 wl-dfclab 35674 eldmqsres2 36349 prter2 36822 dihglb2 39283 prjspeclsp 40372 pm11.6 41899 pm11.71 41904 rfcnnnub 42468 eliunxp2 45557 thinccic 46230 |
Copyright terms: Public domain | W3C validator |