| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.41v | Structured version Visualization version GIF version | ||
| Description: Version of 19.41 2236 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1967. (Revised by Rohan Ridenour, 15-Apr-2022.) |
| Ref | Expression |
|---|---|
| 19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1886 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
| 2 | ax5e 1912 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) | |
| 3 | 2 | anim2i 617 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 5 | pm3.21 471 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 6 | 5 | eximdv 1917 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| 7 | 6 | impcom 407 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.41vv 1950 19.41vvv 1951 19.41vvvv 1952 19.42v 1953 exdistrv 1955 r19.41v 3159 gencbvex 3498 euxfrw 3683 euxfr 3685 euind 3686 dfdif3OLD 4071 zfpair 5363 opabn0 5500 eliunxp 5784 relop 5797 dmuni 5861 dminss 6106 imainss 6107 cnvresima 6183 rnco 6205 coass 6218 xpco 6241 rnoprab 7458 eloprabga 7462 f11o 7889 frxp 8066 omeu 8510 domen 8894 xpassen 8995 dif1enOLD 9086 enfii 9110 ttrclselem2 9641 kmlem3 10066 cflem 10158 cflemOLD 10159 genpass 10922 ltexprlem4 10952 hasheqf1oi 14276 elwspths2spth 29930 bnj534 34708 bnj906 34899 bnj908 34900 bnj916 34902 bnj983 34920 bnj986 34924 fmla0 35357 fmlasuc0 35359 rexxfr3dALT 35614 dftr6 35726 bj-eeanvw 36689 bj-substw 36698 bj-csbsnlem 36879 bj-clel3gALT 37024 bj-rest10 37064 bj-restuni 37073 bj-imdirco 37166 bj-ccinftydisj 37189 wl-dfclab 37572 eldmqsres2 38264 disjdmqscossss 38783 prter2 38862 dihglb2 41324 prjspeclsp 42588 pm11.6 44368 pm11.71 44373 rfcnnnub 45017 eliunxp2 48322 thinccic 49460 |
| Copyright terms: Public domain | W3C validator |