| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.41v | Structured version Visualization version GIF version | ||
| Description: Version of 19.41 2235 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1967. (Revised by Rohan Ridenour, 15-Apr-2022.) |
| Ref | Expression |
|---|---|
| 19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1886 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
| 2 | ax5e 1912 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) | |
| 3 | 2 | anim2i 617 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 5 | pm3.21 471 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 6 | 5 | eximdv 1917 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| 7 | 6 | impcom 407 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.41vv 1950 19.41vvv 1951 19.41vvvv 1952 19.42v 1953 exdistrv 1955 r19.41v 3174 gencbvex 3520 euxfrw 3704 euxfr 3706 euind 3707 dfdif3OLD 4093 zfpair 5391 opabn0 5528 eliunxp 5817 relop 5830 dmuni 5894 dminss 6142 imainss 6143 cnvresima 6219 rnco 6241 coass 6254 xpco 6278 rnoprab 7512 eloprabga 7516 f11o 7945 frxp 8125 omeu 8597 domen 8976 xpassen 9080 dif1enOLD 9176 enfii 9200 ttrclselem2 9740 kmlem3 10167 cflem 10259 cflemOLD 10260 genpass 11023 ltexprlem4 11053 hasheqf1oi 14369 elwspths2spth 29949 bnj534 34770 bnj906 34961 bnj908 34962 bnj916 34964 bnj983 34982 bnj986 34986 fmla0 35404 fmlasuc0 35406 rexxfr3dALT 35661 dftr6 35768 bj-eeanvw 36731 bj-substw 36740 bj-csbsnlem 36921 bj-clel3gALT 37066 bj-rest10 37106 bj-restuni 37115 bj-imdirco 37208 bj-ccinftydisj 37231 wl-dfclab 37614 eldmqsres2 38306 disjdmqscossss 38821 prter2 38899 dihglb2 41361 prjspeclsp 42635 pm11.6 44416 pm11.71 44421 rfcnnnub 45060 eliunxp2 48309 thinccic 49357 |
| Copyright terms: Public domain | W3C validator |