| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.41v | Structured version Visualization version GIF version | ||
| Description: Version of 19.41 2238 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1968. (Revised by Rohan Ridenour, 15-Apr-2022.) |
| Ref | Expression |
|---|---|
| 19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1887 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
| 2 | ax5e 1913 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) | |
| 3 | 2 | anim2i 617 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 5 | pm3.21 471 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 6 | 5 | eximdv 1918 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| 7 | 6 | impcom 407 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: 19.41vv 1951 19.41vvv 1952 19.41vvvv 1953 19.42v 1954 exdistrv 1956 r19.41v 3162 gencbvex 3496 euxfrw 3680 euxfr 3682 euind 3683 dfdif3OLD 4068 zfpair 5359 opabn0 5493 eliunxp 5777 relop 5790 dmuni 5854 dminss 6100 imainss 6101 cnvresima 6177 rnco 6199 rncoOLD 6200 coass 6213 xpco 6236 rnoprab 7451 eloprabga 7455 f11o 7879 frxp 8056 omeu 8500 domen 8884 xpassen 8984 enfii 9095 ttrclselem2 9616 kmlem3 10044 cflem 10136 cflemOLD 10137 genpass 10900 ltexprlem4 10930 hasheqf1oi 14258 elwspths2spth 29946 bnj534 34749 bnj906 34940 bnj908 34941 bnj916 34943 bnj983 34961 bnj986 34965 fmla0 35424 fmlasuc0 35426 rexxfr3dALT 35681 dftr6 35793 bj-eeanvw 36753 bj-substw 36762 bj-csbsnlem 36943 bj-clel3gALT 37088 bj-rest10 37128 bj-restuni 37137 bj-imdirco 37230 bj-ccinftydisj 37253 wl-dfclab 37636 eldmqsres2 38328 disjdmqscossss 38847 prter2 38926 dihglb2 41387 prjspeclsp 42651 pm11.6 44431 pm11.71 44436 rfcnnnub 45079 eliunxp2 48371 thinccic 49509 |
| Copyright terms: Public domain | W3C validator |