| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.41v | Structured version Visualization version GIF version | ||
| Description: Version of 19.41 2240 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1968. (Revised by Rohan Ridenour, 15-Apr-2022.) |
| Ref | Expression |
|---|---|
| 19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1887 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
| 2 | ax5e 1913 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) | |
| 3 | 2 | anim2i 617 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 5 | pm3.21 471 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 6 | 5 | eximdv 1918 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| 7 | 6 | impcom 407 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: 19.41vv 1951 19.41vvv 1952 19.41vvvv 1953 19.42v 1954 exdistrv 1956 r19.41v 3163 gencbvex 3496 euxfrw 3676 euxfr 3678 euind 3679 dfdif3OLD 4067 zfpair 5363 opabn0 5498 eliunxp 5783 relop 5796 dmuni 5860 dminss 6107 imainss 6108 cnvresima 6184 rnco 6206 rncoOLD 6207 coass 6220 xpco 6243 rnoprab 7459 eloprabga 7463 f11o 7887 frxp 8064 omeu 8508 domen 8892 xpassen 8993 enfii 9104 ttrclselem2 9625 kmlem3 10053 cflem 10145 cflemOLD 10146 genpass 10909 ltexprlem4 10939 hasheqf1oi 14262 elwspths2spth 29952 bnj534 34774 bnj906 34965 bnj908 34966 bnj916 34968 bnj983 34986 bnj986 34990 fmla0 35449 fmlasuc0 35451 rexxfr3dALT 35706 dftr6 35818 bj-eeanvw 36780 bj-substw 36789 bj-csbsnlem 36970 bj-clel3gALT 37115 bj-rest10 37155 bj-restuni 37164 bj-imdirco 37257 bj-ccinftydisj 37280 wl-dfclab 37652 eldmqsres2 38349 disjdmqscossss 38924 prter2 39003 dihglb2 41464 prjspeclsp 42733 pm11.6 44512 pm11.71 44517 rfcnnnub 45160 eliunxp2 48461 thinccic 49599 |
| Copyright terms: Public domain | W3C validator |