Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.41v | Structured version Visualization version GIF version |
Description: Version of 19.41 2228 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1971. (Revised by Rohan Ridenour, 15-Apr-2022.) |
Ref | Expression |
---|---|
19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1889 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
2 | ax5e 1915 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) | |
3 | 2 | anim2i 617 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
5 | pm3.21 472 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
6 | 5 | eximdv 1920 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
7 | 6 | impcom 408 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
8 | 4, 7 | impbii 208 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: 19.41vv 1954 19.41vvv 1955 19.41vvvv 1956 19.42v 1957 exdistrv 1959 r19.41v 3276 gencbvex 3488 euxfrw 3656 euxfr 3658 euind 3659 dfdif3 4049 zfpair 5344 opabn0 5466 eliunxp 5746 relop 5759 dmuni 5823 dminss 6056 imainss 6057 cnvresima 6133 rnco 6156 coass 6169 xpco 6192 rnoprab 7378 eloprabga 7382 f11o 7789 frxp 7967 omeu 8416 domen 8751 xpassen 8853 dif1en 8945 enfii 8972 ttrclselem2 9484 kmlem3 9908 cflem 10002 genpass 10765 ltexprlem4 10795 hasheqf1oi 14066 elwspths2spth 28332 bnj534 32719 bnj906 32910 bnj908 32911 bnj916 32913 bnj983 32931 bnj986 32935 fmla0 33344 fmlasuc0 33346 dftr6 33718 bj-eeanvw 34895 bj-substw 34904 bj-csbsnlem 35088 bj-clel3gALT 35221 bj-rest10 35259 bj-restuni 35268 bj-imdirco 35361 bj-ccinftydisj 35384 wl-dfclab 35747 eldmqsres2 36422 prter2 36895 dihglb2 39356 prjspeclsp 40451 pm11.6 42010 pm11.71 42015 rfcnnnub 42579 eliunxp2 45669 thinccic 46342 |
Copyright terms: Public domain | W3C validator |