| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.41v | Structured version Visualization version GIF version | ||
| Description: Version of 19.41 2236 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1967. (Revised by Rohan Ridenour, 15-Apr-2022.) |
| Ref | Expression |
|---|---|
| 19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1886 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
| 2 | ax5e 1912 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) | |
| 3 | 2 | anim2i 617 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 5 | pm3.21 471 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 6 | 5 | eximdv 1917 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| 7 | 6 | impcom 407 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.41vv 1950 19.41vvv 1951 19.41vvvv 1952 19.42v 1953 exdistrv 1955 r19.41v 3167 gencbvex 3507 euxfrw 3692 euxfr 3694 euind 3695 dfdif3OLD 4081 zfpair 5376 opabn0 5513 eliunxp 5801 relop 5814 dmuni 5878 dminss 6126 imainss 6127 cnvresima 6203 rnco 6225 coass 6238 xpco 6262 rnoprab 7494 eloprabga 7498 f11o 7925 frxp 8105 omeu 8549 domen 8933 xpassen 9035 dif1enOLD 9126 enfii 9150 ttrclselem2 9679 kmlem3 10106 cflem 10198 cflemOLD 10199 genpass 10962 ltexprlem4 10992 hasheqf1oi 14316 elwspths2spth 29897 bnj534 34729 bnj906 34920 bnj908 34921 bnj916 34923 bnj983 34941 bnj986 34945 fmla0 35369 fmlasuc0 35371 rexxfr3dALT 35626 dftr6 35738 bj-eeanvw 36701 bj-substw 36710 bj-csbsnlem 36891 bj-clel3gALT 37036 bj-rest10 37076 bj-restuni 37085 bj-imdirco 37178 bj-ccinftydisj 37201 wl-dfclab 37584 eldmqsres2 38276 disjdmqscossss 38795 prter2 38874 dihglb2 41336 prjspeclsp 42600 pm11.6 44381 pm11.71 44386 rfcnnnub 45030 eliunxp2 48322 thinccic 49460 |
| Copyright terms: Public domain | W3C validator |