| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.41v | Structured version Visualization version GIF version | ||
| Description: Version of 19.41 2236 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.) Remove dependency on ax-6 1967. (Revised by Rohan Ridenour, 15-Apr-2022.) |
| Ref | Expression |
|---|---|
| 19.41v | ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1886 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
| 2 | ax5e 1912 | . . . 4 ⊢ (∃𝑥𝜓 → 𝜓) | |
| 3 | 2 | anim2i 617 | . . 3 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ 𝜓)) |
| 5 | pm3.21 471 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 6 | 5 | eximdv 1917 | . . 3 ⊢ (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| 7 | 6 | impcom 407 | . 2 ⊢ ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.41vv 1950 19.41vvv 1951 19.41vvvv 1952 19.42v 1953 exdistrv 1955 r19.41v 3168 gencbvex 3510 euxfrw 3695 euxfr 3697 euind 3698 dfdif3OLD 4084 zfpair 5379 opabn0 5516 eliunxp 5804 relop 5817 dmuni 5881 dminss 6129 imainss 6130 cnvresima 6206 rnco 6228 coass 6241 xpco 6265 rnoprab 7497 eloprabga 7501 f11o 7928 frxp 8108 omeu 8552 domen 8936 xpassen 9040 dif1enOLD 9132 enfii 9156 ttrclselem2 9686 kmlem3 10113 cflem 10205 cflemOLD 10206 genpass 10969 ltexprlem4 10999 hasheqf1oi 14323 elwspths2spth 29904 bnj534 34736 bnj906 34927 bnj908 34928 bnj916 34930 bnj983 34948 bnj986 34952 fmla0 35376 fmlasuc0 35378 rexxfr3dALT 35633 dftr6 35745 bj-eeanvw 36708 bj-substw 36717 bj-csbsnlem 36898 bj-clel3gALT 37043 bj-rest10 37083 bj-restuni 37092 bj-imdirco 37185 bj-ccinftydisj 37208 wl-dfclab 37591 eldmqsres2 38283 disjdmqscossss 38802 prter2 38881 dihglb2 41343 prjspeclsp 42607 pm11.6 44388 pm11.71 44393 rfcnnnub 45037 eliunxp2 48326 thinccic 49464 |
| Copyright terms: Public domain | W3C validator |