Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-substax12 Structured version   Visualization version   GIF version

Theorem bj-substax12 36744
Description: Equivalent form of the axiom of substitution bj-ax12 36680. Although both sides need a DV condition on 𝑥, 𝑡 (or as in bj-ax12v3 36708 on 𝑡, 𝜑) to hold, their equivalence holds without DV conditions. The forward implication is proved in modal (K4) while the reverse implication is proved in modal (T5). The LHS has the advantage of not involving nested quantifiers on the same variable. Its metaweakening is proved from the core axiom schemes in bj-substw 36745. Note that in the LHS, the reverse implication holds by equs4 2421 (or equs4v 2000 if a DV condition is added on 𝑥, 𝑡 as in bj-ax12 36680), and the forward implication is sbalex 2243.

The LHS can be read as saying that if there exists a variable equal to a given term witnessing a given formula, then all variables equal to that term also witness that formula. The equivalent form of the LHS using only primitive symbols is (∀𝑥(𝑥 = 𝑡𝜑) ∨ ∀𝑥(𝑥 = 𝑡 → ¬ 𝜑)), which expresses that a given formula is true at all variables equal to a given term, or false at all these variables. An equivalent form of the LHS using only the existential quantifier is ¬ (∃𝑥(𝑥 = 𝑡𝜑) ∧ ∃𝑥(𝑥 = 𝑡 ∧ ¬ 𝜑)), which expresses that there can be no two variables both equal to a given term, one witnessing a formula and the other witnessing its negation. These equivalences do not hold in intuitionistic logic. The LHS should be the preferred form, and has the advantage of having no negation nor nested quantifiers. (Contributed by BJ, 21-May-2024.) (Proof modification is discouraged.)

Assertion
Ref Expression
bj-substax12 ((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))))

Proof of Theorem bj-substax12
StepHypRef Expression
1 bj-modal4 36737 . . . . 5 (∀𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑))
21imim2i 16 . . . 4 ((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) → (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑)))
3 19.38 1839 . . . 4 ((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑)) → ∀𝑥((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)))
42, 3syl 17 . . 3 ((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) → ∀𝑥((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)))
5 hbe1a 2145 . . . . . 6 (∃𝑥𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑))
65, 1syl 17 . . . . 5 (∃𝑥𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑))
7 bj-exlimg 36646 . . . . 5 ((∃𝑥𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑)) → (∀𝑥((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) → (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑))))
86, 7ax-mp 5 . . . 4 (∀𝑥((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) → (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑)))
9 sp 2184 . . . . 5 (∀𝑥𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑))
109imim2i 16 . . . 4 ((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑)) → (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)))
118, 10syl 17 . . 3 (∀𝑥((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) → (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)))
124, 11impbii 209 . 2 ((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) ↔ ∀𝑥((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)))
13 impexp 450 . . 3 (((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) ↔ (𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))))
1413albii 1819 . 2 (∀𝑥((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))))
1512, 14bitri 275 1 ((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator