Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-substax12 Structured version   Visualization version   GIF version

Theorem bj-substax12 34589
Description: Equivalent form of the axiom of substitution bj-ax12 34524. Although both sides need a DV condition on 𝑥, 𝑡 (or as in bj-ax12v3 34553 on 𝑡, 𝜑) to hold, their equivalence holds without DV conditions. The forward implication is proved in modal (K4) while the reverse implication is proved in modal (T5). The LHS has the advantage of not involving nested quantifiers on the same variable. Its metaweakening is proved from the core axiom schemes in bj-substw 34590. Note that in the LHS, the reverse implication holds by equs4 2415 (or equs4v 2009 if a DV condition is added on 𝑥, 𝑡 as in bj-ax12 34524).

The LHS can be read as saying that if there exists a setvar equal to a given term witnessing 𝜑, then all setvars equal to that term also witness 𝜑. An equivalent suggestive form for the LHS is ¬ (∃𝑥(𝑥 = 𝑡𝜑) ∧ ∃𝑥(𝑥 = 𝑡 ∧ ¬ 𝜑)), which expresses that there can be no two variables both equal to a given term, one witnessing 𝜑 and the other witnessing ¬ 𝜑. (Contributed by BJ, 21-May-2024.) (Proof modification is discouraged.)

Assertion
Ref Expression
bj-substax12 ((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))))

Proof of Theorem bj-substax12
StepHypRef Expression
1 bj-modal4 34582 . . . . 5 (∀𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑))
21imim2i 16 . . . 4 ((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) → (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑)))
3 19.38 1846 . . . 4 ((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑)) → ∀𝑥((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)))
42, 3syl 17 . . 3 ((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) → ∀𝑥((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)))
5 hbe1a 2146 . . . . . 6 (∃𝑥𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑))
65, 1syl 17 . . . . 5 (∃𝑥𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑))
7 bj-exlimg 34490 . . . . 5 ((∃𝑥𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑)) → (∀𝑥((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) → (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑))))
86, 7ax-mp 5 . . . 4 (∀𝑥((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) → (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑)))
9 sp 2182 . . . . 5 (∀𝑥𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑))
109imim2i 16 . . . 4 ((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥𝑥(𝑥 = 𝑡𝜑)) → (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)))
118, 10syl 17 . . 3 (∀𝑥((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) → (∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)))
124, 11impbii 212 . 2 ((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) ↔ ∀𝑥((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)))
13 impexp 454 . . 3 (((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) ↔ (𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))))
1413albii 1827 . 2 (∀𝑥((𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))))
1512, 14bitri 278 1 ((∃𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1541  wex 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-10 2143  ax-12 2177
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator