Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1266 Structured version   Visualization version   GIF version

Theorem bnj1266 34351
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1266.1 (𝜒 → ∃𝑥(𝜑𝜓))
Assertion
Ref Expression
bnj1266 (𝜒 → ∃𝑥𝜓)

Proof of Theorem bnj1266
StepHypRef Expression
1 bnj1266.1 . 2 (𝜒 → ∃𝑥(𝜑𝜓))
2 simpr 484 . 2 ((𝜑𝜓) → 𝜓)
31, 2bnj593 34285 1 (𝜒 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774
This theorem is referenced by:  bnj1265  34352
  Copyright terms: Public domain W3C validator