|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1265 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj1265.1 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | 
| Ref | Expression | 
|---|---|
| bnj1265 | ⊢ (𝜑 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1265.1 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 2 | 1 | bnj1196 34808 | . . 3 ⊢ (𝜑 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | 
| 3 | 2 | bnj1266 34825 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | 
| 4 | 3 | bnj937 34785 | 1 ⊢ (𝜑 → 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3070 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3071 | 
| This theorem is referenced by: bnj1253 35031 bnj1280 35034 bnj1296 35035 bnj1371 35043 bnj1497 35074 | 
| Copyright terms: Public domain | W3C validator |