Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1265 Structured version   Visualization version   GIF version

Theorem bnj1265 32771
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1265.1 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
bnj1265 (𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem bnj1265
StepHypRef Expression
1 bnj1265.1 . . . 4 (𝜑 → ∃𝑥𝐴 𝜓)
21bnj1196 32753 . . 3 (𝜑 → ∃𝑥(𝑥𝐴𝜓))
32bnj1266 32770 . 2 (𝜑 → ∃𝑥𝜓)
43bnj937 32730 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wrex 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-rex 3071
This theorem is referenced by:  bnj1253  32976  bnj1280  32979  bnj1296  32980  bnj1371  32988  bnj1497  33019
  Copyright terms: Public domain W3C validator