Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1262 Structured version   Visualization version   GIF version

Theorem bnj1262 31494
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1262.1 𝐴𝐵
bnj1262.2 (𝜑𝐶 = 𝐴)
Assertion
Ref Expression
bnj1262 (𝜑𝐶𝐵)

Proof of Theorem bnj1262
StepHypRef Expression
1 bnj1262.2 . 2 (𝜑𝐶 = 𝐴)
2 bnj1262.1 . 2 𝐴𝐵
31, 2syl6eqss 3873 1 (𝜑𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wss 3791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-ext 2753
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-in 3798  df-ss 3805
This theorem is referenced by:  bnj229  31567  bnj1128  31671  bnj1145  31674
  Copyright terms: Public domain W3C validator