Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1262 Structured version   Visualization version   GIF version

Theorem bnj1262 32690
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1262.1 𝐴𝐵
bnj1262.2 (𝜑𝐶 = 𝐴)
Assertion
Ref Expression
bnj1262 (𝜑𝐶𝐵)

Proof of Theorem bnj1262
StepHypRef Expression
1 bnj1262.2 . 2 (𝜑𝐶 = 𝐴)
2 bnj1262.1 . 2 𝐴𝐵
31, 2eqsstrdi 3971 1 (𝜑𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  bnj229  32764  bnj1128  32870  bnj1145  32873
  Copyright terms: Public domain W3C validator