Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj593 Structured version   Visualization version   GIF version

Theorem bnj593 34738
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj593.1 (𝜑 → ∃𝑥𝜓)
bnj593.2 (𝜓𝜒)
Assertion
Ref Expression
bnj593 (𝜑 → ∃𝑥𝜒)

Proof of Theorem bnj593
StepHypRef Expression
1 bnj593.1 . 2 (𝜑 → ∃𝑥𝜓)
2 bnj593.2 . . 3 (𝜓𝜒)
32eximi 1832 . 2 (∃𝑥𝜓 → ∃𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∃𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806
This theorem depends on definitions:  df-bi 207  df-ex 1777
This theorem is referenced by:  bnj1266  34804  bnj1304  34812  bnj1379  34823  bnj594  34905  bnj852  34914  bnj908  34924  bnj996  34949  bnj907  34960  bnj1128  34983  bnj1148  34989  bnj1154  34992  bnj1189  35002  bnj1245  35007  bnj1279  35011  bnj1286  35012  bnj1311  35017  bnj1371  35022  bnj1398  35027  bnj1408  35029  bnj1450  35043  bnj1498  35054  bnj1514  35056  bnj1501  35060
  Copyright terms: Public domain W3C validator