Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj593 Structured version   Visualization version   GIF version

Theorem bnj593 34409
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj593.1 (𝜑 → ∃𝑥𝜓)
bnj593.2 (𝜓𝜒)
Assertion
Ref Expression
bnj593 (𝜑 → ∃𝑥𝜒)

Proof of Theorem bnj593
StepHypRef Expression
1 bnj593.1 . 2 (𝜑 → ∃𝑥𝜓)
2 bnj593.2 . . 3 (𝜓𝜒)
32eximi 1829 . 2 (∃𝑥𝜓 → ∃𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∃𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 206  df-ex 1774
This theorem is referenced by:  bnj1266  34475  bnj1304  34483  bnj1379  34494  bnj594  34576  bnj852  34585  bnj908  34595  bnj996  34620  bnj907  34631  bnj1128  34654  bnj1148  34660  bnj1154  34663  bnj1189  34673  bnj1245  34678  bnj1279  34682  bnj1286  34683  bnj1311  34688  bnj1371  34693  bnj1398  34698  bnj1408  34700  bnj1450  34714  bnj1498  34725  bnj1514  34727  bnj1501  34731
  Copyright terms: Public domain W3C validator