Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj593 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj593.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
bnj593.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
bnj593 | ⊢ (𝜑 → ∃𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj593.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | bnj593.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 2 | eximi 1837 | . 2 ⊢ (∃𝑥𝜓 → ∃𝑥𝜒) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: bnj1266 32791 bnj1304 32799 bnj1379 32810 bnj594 32892 bnj852 32901 bnj908 32911 bnj996 32936 bnj907 32947 bnj1128 32970 bnj1148 32976 bnj1154 32979 bnj1189 32989 bnj1245 32994 bnj1279 32998 bnj1286 32999 bnj1311 33004 bnj1371 33009 bnj1398 33014 bnj1408 33016 bnj1450 33030 bnj1498 33041 bnj1514 33043 bnj1501 33047 |
Copyright terms: Public domain | W3C validator |