Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj593 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj593.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
bnj593.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
bnj593 | ⊢ (𝜑 → ∃𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj593.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | bnj593.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 2 | eximi 1838 | . 2 ⊢ (∃𝑥𝜓 → ∃𝑥𝜒) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: bnj1266 32691 bnj1304 32699 bnj1379 32710 bnj594 32792 bnj852 32801 bnj908 32811 bnj996 32836 bnj907 32847 bnj1128 32870 bnj1148 32876 bnj1154 32879 bnj1189 32889 bnj1245 32894 bnj1279 32898 bnj1286 32899 bnj1311 32904 bnj1371 32909 bnj1398 32914 bnj1408 32916 bnj1450 32930 bnj1498 32941 bnj1514 32943 bnj1501 32947 |
Copyright terms: Public domain | W3C validator |