| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj593 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj593.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
| bnj593.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| bnj593 | ⊢ (𝜑 → ∃𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj593.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | bnj593.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 2 | eximi 1835 | . 2 ⊢ (∃𝑥𝜓 → ∃𝑥𝜒) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: bnj1266 34801 bnj1304 34809 bnj1379 34820 bnj594 34902 bnj852 34911 bnj908 34921 bnj996 34946 bnj907 34957 bnj1128 34980 bnj1148 34986 bnj1154 34989 bnj1189 34999 bnj1245 35004 bnj1279 35008 bnj1286 35009 bnj1311 35014 bnj1371 35019 bnj1398 35024 bnj1408 35026 bnj1450 35040 bnj1498 35051 bnj1514 35053 bnj1501 35057 |
| Copyright terms: Public domain | W3C validator |