| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj593 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj593.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
| bnj593.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| bnj593 | ⊢ (𝜑 → ∃𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj593.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | bnj593.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 2 | eximi 1836 | . 2 ⊢ (∃𝑥𝜓 → ∃𝑥𝜒) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: bnj1266 34823 bnj1304 34831 bnj1379 34842 bnj594 34924 bnj852 34933 bnj908 34943 bnj996 34968 bnj907 34979 bnj1128 35002 bnj1148 35008 bnj1154 35011 bnj1189 35021 bnj1245 35026 bnj1279 35030 bnj1286 35031 bnj1311 35036 bnj1371 35041 bnj1398 35046 bnj1408 35048 bnj1450 35062 bnj1498 35073 bnj1514 35075 bnj1501 35079 |
| Copyright terms: Public domain | W3C validator |