![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj593 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj593.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
bnj593.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
bnj593 | ⊢ (𝜑 → ∃𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj593.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | bnj593.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 2 | eximi 1829 | . 2 ⊢ (∃𝑥𝜓 → ∃𝑥𝜒) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 |
This theorem depends on definitions: df-bi 206 df-ex 1774 |
This theorem is referenced by: bnj1266 34475 bnj1304 34483 bnj1379 34494 bnj594 34576 bnj852 34585 bnj908 34595 bnj996 34620 bnj907 34631 bnj1128 34654 bnj1148 34660 bnj1154 34663 bnj1189 34673 bnj1245 34678 bnj1279 34682 bnj1286 34683 bnj1311 34688 bnj1371 34693 bnj1398 34698 bnj1408 34700 bnj1450 34714 bnj1498 34725 bnj1514 34727 bnj1501 34731 |
Copyright terms: Public domain | W3C validator |