| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj593 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj593.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
| bnj593.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| bnj593 | ⊢ (𝜑 → ∃𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj593.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | bnj593.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 2 | eximi 1835 | . 2 ⊢ (∃𝑥𝜓 → ∃𝑥𝜒) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: bnj1266 34795 bnj1304 34803 bnj1379 34814 bnj594 34896 bnj852 34905 bnj908 34915 bnj996 34940 bnj907 34951 bnj1128 34974 bnj1148 34980 bnj1154 34983 bnj1189 34993 bnj1245 34998 bnj1279 35002 bnj1286 35003 bnj1311 35008 bnj1371 35013 bnj1398 35018 bnj1408 35020 bnj1450 35034 bnj1498 35045 bnj1514 35047 bnj1501 35051 |
| Copyright terms: Public domain | W3C validator |