Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj593 Structured version   Visualization version   GIF version

Theorem bnj593 32248
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj593.1 (𝜑 → ∃𝑥𝜓)
bnj593.2 (𝜓𝜒)
Assertion
Ref Expression
bnj593 (𝜑 → ∃𝑥𝜒)

Proof of Theorem bnj593
StepHypRef Expression
1 bnj593.1 . 2 (𝜑 → ∃𝑥𝜓)
2 bnj593.2 . . 3 (𝜓𝜒)
32eximi 1836 . 2 (∃𝑥𝜓 → ∃𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∃𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 210  df-ex 1782
This theorem is referenced by:  bnj1266  32315  bnj1304  32323  bnj1379  32334  bnj594  32416  bnj852  32425  bnj908  32435  bnj996  32460  bnj907  32471  bnj1128  32494  bnj1148  32500  bnj1154  32503  bnj1189  32513  bnj1245  32518  bnj1279  32522  bnj1286  32523  bnj1311  32528  bnj1371  32533  bnj1398  32538  bnj1408  32540  bnj1450  32554  bnj1498  32565  bnj1514  32567  bnj1501  32571
  Copyright terms: Public domain W3C validator