Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj593 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj593.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
bnj593.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
bnj593 | ⊢ (𝜑 → ∃𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj593.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | bnj593.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
3 | 2 | eximi 1836 | . 2 ⊢ (∃𝑥𝜓 → ∃𝑥𝜒) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 210 df-ex 1782 |
This theorem is referenced by: bnj1266 32315 bnj1304 32323 bnj1379 32334 bnj594 32416 bnj852 32425 bnj908 32435 bnj996 32460 bnj907 32471 bnj1128 32494 bnj1148 32500 bnj1154 32503 bnj1189 32513 bnj1245 32518 bnj1279 32522 bnj1286 32523 bnj1311 32528 bnj1371 32533 bnj1398 32538 bnj1408 32540 bnj1450 32554 bnj1498 32565 bnj1514 32567 bnj1501 32571 |
Copyright terms: Public domain | W3C validator |