| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj593 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj593.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
| bnj593.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| bnj593 | ⊢ (𝜑 → ∃𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj593.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | bnj593.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 2 | eximi 1835 | . 2 ⊢ (∃𝑥𝜓 → ∃𝑥𝜒) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: bnj1266 34847 bnj1304 34855 bnj1379 34866 bnj594 34948 bnj852 34957 bnj908 34967 bnj996 34992 bnj907 35003 bnj1128 35026 bnj1148 35032 bnj1154 35035 bnj1189 35045 bnj1245 35050 bnj1279 35054 bnj1286 35055 bnj1311 35060 bnj1371 35065 bnj1398 35070 bnj1408 35072 bnj1450 35086 bnj1498 35097 bnj1514 35099 bnj1501 35103 |
| Copyright terms: Public domain | W3C validator |