| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj593 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj593.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
| bnj593.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| bnj593 | ⊢ (𝜑 → ∃𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj593.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | bnj593.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 3 | 2 | eximi 1835 | . 2 ⊢ (∃𝑥𝜓 → ∃𝑥𝜒) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: bnj1266 34794 bnj1304 34802 bnj1379 34813 bnj594 34895 bnj852 34904 bnj908 34914 bnj996 34939 bnj907 34950 bnj1128 34973 bnj1148 34979 bnj1154 34982 bnj1189 34992 bnj1245 34997 bnj1279 35001 bnj1286 35002 bnj1311 35007 bnj1371 35012 bnj1398 35017 bnj1408 35019 bnj1450 35033 bnj1498 35044 bnj1514 35046 bnj1501 35050 |
| Copyright terms: Public domain | W3C validator |