Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj593 Structured version   Visualization version   GIF version

Theorem bnj593 32625
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj593.1 (𝜑 → ∃𝑥𝜓)
bnj593.2 (𝜓𝜒)
Assertion
Ref Expression
bnj593 (𝜑 → ∃𝑥𝜒)

Proof of Theorem bnj593
StepHypRef Expression
1 bnj593.1 . 2 (𝜑 → ∃𝑥𝜓)
2 bnj593.2 . . 3 (𝜓𝜒)
32eximi 1838 . 2 (∃𝑥𝜓 → ∃𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∃𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  bnj1266  32691  bnj1304  32699  bnj1379  32710  bnj594  32792  bnj852  32801  bnj908  32811  bnj996  32836  bnj907  32847  bnj1128  32870  bnj1148  32876  bnj1154  32879  bnj1189  32889  bnj1245  32894  bnj1279  32898  bnj1286  32899  bnj1311  32904  bnj1371  32909  bnj1398  32914  bnj1408  32916  bnj1450  32930  bnj1498  32941  bnj1514  32943  bnj1501  32947
  Copyright terms: Public domain W3C validator