Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj593 Structured version   Visualization version   GIF version

Theorem bnj593 34781
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj593.1 (𝜑 → ∃𝑥𝜓)
bnj593.2 (𝜓𝜒)
Assertion
Ref Expression
bnj593 (𝜑 → ∃𝑥𝜒)

Proof of Theorem bnj593
StepHypRef Expression
1 bnj593.1 . 2 (𝜑 → ∃𝑥𝜓)
2 bnj593.2 . . 3 (𝜓𝜒)
32eximi 1835 . 2 (∃𝑥𝜓 → ∃𝑥𝜒)
41, 3syl 17 1 (𝜑 → ∃𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  bnj1266  34847  bnj1304  34855  bnj1379  34866  bnj594  34948  bnj852  34957  bnj908  34967  bnj996  34992  bnj907  35003  bnj1128  35026  bnj1148  35032  bnj1154  35035  bnj1189  35045  bnj1245  35050  bnj1279  35054  bnj1286  35055  bnj1311  35060  bnj1371  35065  bnj1398  35070  bnj1408  35072  bnj1450  35086  bnj1498  35097  bnj1514  35099  bnj1501  35103
  Copyright terms: Public domain W3C validator