Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1541 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1541.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝐴 ≠ 𝐵)) |
bnj1541.2 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
bnj1541 | ⊢ (𝜓 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1541.2 | . . . 4 ⊢ ¬ 𝜑 | |
2 | bnj1541.1 | . . . 4 ⊢ (𝜑 ↔ (𝜓 ∧ 𝐴 ≠ 𝐵)) | |
3 | 1, 2 | mtbi 325 | . . 3 ⊢ ¬ (𝜓 ∧ 𝐴 ≠ 𝐵) |
4 | 3 | imnani 404 | . 2 ⊢ (𝜓 → ¬ 𝐴 ≠ 𝐵) |
5 | nne 2955 | . 2 ⊢ (¬ 𝐴 ≠ 𝐵 ↔ 𝐴 = 𝐵) | |
6 | 4, 5 | sylib 221 | 1 ⊢ (𝜓 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ≠ wne 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ne 2952 |
This theorem is referenced by: bnj1312 32570 bnj1523 32583 |
Copyright terms: Public domain | W3C validator |