Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1312 Structured version   Visualization version   GIF version

Theorem bnj1312 35065
Description: Technical lemma for bnj60 35069. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e., a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1312.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1312.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1312.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1312.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1312.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1312.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1312.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1312.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1312.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1312.10 𝑃 = 𝐻
bnj1312.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1312.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1312.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1312.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1312 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥,𝑦,𝑧   𝐵,𝑓   𝑦,𝐶   𝑦,𝐷   𝐸,𝑑,𝑓,𝑦,𝑧   𝐺,𝑑,𝑓,𝑥,𝑦,𝑧   𝑧,𝑄   𝑅,𝑑,𝑓,𝑥,𝑦,𝑧   𝑧,𝑌   𝜒,𝑧   𝜓,𝑦   𝜏,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑑)   𝐶(𝑥,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑓,𝑑)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1312
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1312.5 . . 3 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
2 bnj1312.6 . . . 4 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
32simplbi 497 . . . . . . 7 (𝜓𝑅 FrSe 𝐴)
41ssrab3 4095 . . . . . . . 8 𝐷𝐴
54a1i 11 . . . . . . 7 (𝜓𝐷𝐴)
62simprbi 496 . . . . . . 7 (𝜓𝐷 ≠ ∅)
71bnj1230 34809 . . . . . . . 8 (𝑤𝐷 → ∀𝑥 𝑤𝐷)
87bnj1228 35018 . . . . . . 7 ((𝑅 FrSe 𝐴𝐷𝐴𝐷 ≠ ∅) → ∃𝑥𝐷𝑦𝐷 ¬ 𝑦𝑅𝑥)
93, 5, 6, 8syl3anc 1372 . . . . . 6 (𝜓 → ∃𝑥𝐷𝑦𝐷 ¬ 𝑦𝑅𝑥)
10 bnj1312.7 . . . . . 6 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
11 nfv 1914 . . . . . . . . 9 𝑥 𝑅 FrSe 𝐴
127nfcii 2894 . . . . . . . . . 10 𝑥𝐷
13 nfcv 2905 . . . . . . . . . 10 𝑥
1412, 13nfne 3043 . . . . . . . . 9 𝑥 𝐷 ≠ ∅
1511, 14nfan 1899 . . . . . . . 8 𝑥(𝑅 FrSe 𝐴𝐷 ≠ ∅)
162, 15nfxfr 1852 . . . . . . 7 𝑥𝜓
1716nf5ri 2195 . . . . . 6 (𝜓 → ∀𝑥𝜓)
189, 10, 17bnj1521 34858 . . . . 5 (𝜓 → ∃𝑥𝜒)
1910simp2bi 1147 . . . . 5 (𝜒𝑥𝐷)
201bnj1538 34862 . . . . . 6 (𝑥𝐷 → ¬ ∃𝑓𝜏)
21 bnj1312.1 . . . . . . . . 9 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
22 bnj1312.2 . . . . . . . . 9 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
23 bnj1312.3 . . . . . . . . 9 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
24 bnj1312.4 . . . . . . . . 9 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
25 bnj1312.8 . . . . . . . . 9 (𝜏′[𝑦 / 𝑥]𝜏)
26 bnj1312.9 . . . . . . . . 9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
27 bnj1312.10 . . . . . . . . 9 𝑃 = 𝐻
28 bnj1312.11 . . . . . . . . 9 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
29 bnj1312.12 . . . . . . . . 9 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
3021, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29bnj1489 35063 . . . . . . . 8 (𝜒𝑄 ∈ V)
31 bnj1312.13 . . . . . . . . . . 11 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
32 bnj1312.14 . . . . . . . . . . 11 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
3310, 3bnj835 34766 . . . . . . . . . . . . . 14 (𝜒𝑅 FrSe 𝐴)
3421, 22, 23, 24, 1, 2, 10, 25, 26, 27bnj1384 35039 . . . . . . . . . . . . . 14 (𝑅 FrSe 𝐴 → Fun 𝑃)
3533, 34syl 17 . . . . . . . . . . . . 13 (𝜒 → Fun 𝑃)
3621, 22, 23, 24, 1, 2, 10, 25, 26, 27bnj1415 35045 . . . . . . . . . . . . 13 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
3735, 36bnj1422 34844 . . . . . . . . . . . 12 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
3821, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 36bnj1416 35046 . . . . . . . . . . . . . 14 (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
3921, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 35, 38, 36bnj1421 35049 . . . . . . . . . . . . 13 (𝜒 → Fun 𝑄)
4039, 38bnj1422 34844 . . . . . . . . . . . 12 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
4121, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 31, 32, 37, 40bnj1423 35058 . . . . . . . . . . 11 (𝜒 → ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))
4232fneq2i 6674 . . . . . . . . . . . 12 (𝑄 Fn 𝐸𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
4340, 42sylibr 234 . . . . . . . . . . 11 (𝜒𝑄 Fn 𝐸)
4421, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 31, 32bnj1452 35059 . . . . . . . . . . 11 (𝜒𝐸𝐵)
4521, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 31, 32, 30, 41, 43, 44bnj1463 35062 . . . . . . . . . 10 (𝜒𝑄𝐶)
4645, 38jca 511 . . . . . . . . 9 (𝜒 → (𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
4721, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 46bnj1491 35064 . . . . . . . 8 ((𝜒𝑄 ∈ V) → ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
4830, 47mpdan 687 . . . . . . 7 (𝜒 → ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
4948, 24bnj1198 34802 . . . . . 6 (𝜒 → ∃𝑓𝜏)
5020, 49nsyl3 138 . . . . 5 (𝜒 → ¬ 𝑥𝐷)
5118, 19, 50bnj1304 34826 . . . 4 ¬ 𝜓
522, 51bnj1541 34863 . . 3 (𝑅 FrSe 𝐴𝐷 = ∅)
531, 52bnj1476 34854 . 2 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝜏)
5424exbii 1847 . . . 4 (∃𝑓𝜏 ↔ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
55 df-rex 3071 . . . 4 (∃𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
5654, 55bitr4i 278 . . 3 (∃𝑓𝜏 ↔ ∃𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
5756ralbii 3093 . 2 (∀𝑥𝐴𝑓𝜏 ↔ ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
5853, 57sylib 218 1 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wex 1778  wcel 2108  {cab 2714  wne 2940  wral 3061  wrex 3070  {crab 3436  Vcvv 3481  [wsbc 3794  cun 3964  wss 3966  c0 4342  {csn 4634  cop 4640   cuni 4915   class class class wbr 5151  dom cdm 5693  cres 5695  Fun wfun 6563   Fn wfn 6564  cfv 6569   predc-bnj14 34695   FrSe w-bnj15 34699   trClc-bnj18 34701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-reg 9639  ax-inf2 9688
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-om 7895  df-1o 8514  df-bnj17 34694  df-bnj14 34696  df-bnj13 34698  df-bnj15 34700  df-bnj18 34702  df-bnj19 34704
This theorem is referenced by:  bnj1493  35066
  Copyright terms: Public domain W3C validator