Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1312 Structured version   Visualization version   GIF version

Theorem bnj1312 35036
Description: Technical lemma for bnj60 35040. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e., a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1312.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1312.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1312.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1312.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1312.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1312.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1312.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1312.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1312.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1312.10 𝑃 = 𝐻
bnj1312.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1312.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1312.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1312.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1312 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥,𝑦,𝑧   𝐵,𝑓   𝑦,𝐶   𝑦,𝐷   𝐸,𝑑,𝑓,𝑦,𝑧   𝐺,𝑑,𝑓,𝑥,𝑦,𝑧   𝑧,𝑄   𝑅,𝑑,𝑓,𝑥,𝑦,𝑧   𝑧,𝑌   𝜒,𝑧   𝜓,𝑦   𝜏,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑑)   𝐶(𝑥,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑓,𝑑)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1312
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1312.5 . . 3 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
2 bnj1312.6 . . . 4 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
32simplbi 497 . . . . . . 7 (𝜓𝑅 FrSe 𝐴)
41ssrab3 4105 . . . . . . . 8 𝐷𝐴
54a1i 11 . . . . . . 7 (𝜓𝐷𝐴)
62simprbi 496 . . . . . . 7 (𝜓𝐷 ≠ ∅)
71bnj1230 34780 . . . . . . . 8 (𝑤𝐷 → ∀𝑥 𝑤𝐷)
87bnj1228 34989 . . . . . . 7 ((𝑅 FrSe 𝐴𝐷𝐴𝐷 ≠ ∅) → ∃𝑥𝐷𝑦𝐷 ¬ 𝑦𝑅𝑥)
93, 5, 6, 8syl3anc 1371 . . . . . 6 (𝜓 → ∃𝑥𝐷𝑦𝐷 ¬ 𝑦𝑅𝑥)
10 bnj1312.7 . . . . . 6 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
11 nfv 1913 . . . . . . . . 9 𝑥 𝑅 FrSe 𝐴
127nfcii 2897 . . . . . . . . . 10 𝑥𝐷
13 nfcv 2908 . . . . . . . . . 10 𝑥
1412, 13nfne 3049 . . . . . . . . 9 𝑥 𝐷 ≠ ∅
1511, 14nfan 1898 . . . . . . . 8 𝑥(𝑅 FrSe 𝐴𝐷 ≠ ∅)
162, 15nfxfr 1851 . . . . . . 7 𝑥𝜓
1716nf5ri 2196 . . . . . 6 (𝜓 → ∀𝑥𝜓)
189, 10, 17bnj1521 34829 . . . . 5 (𝜓 → ∃𝑥𝜒)
1910simp2bi 1146 . . . . 5 (𝜒𝑥𝐷)
201bnj1538 34833 . . . . . 6 (𝑥𝐷 → ¬ ∃𝑓𝜏)
21 bnj1312.1 . . . . . . . . 9 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
22 bnj1312.2 . . . . . . . . 9 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
23 bnj1312.3 . . . . . . . . 9 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
24 bnj1312.4 . . . . . . . . 9 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
25 bnj1312.8 . . . . . . . . 9 (𝜏′[𝑦 / 𝑥]𝜏)
26 bnj1312.9 . . . . . . . . 9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
27 bnj1312.10 . . . . . . . . 9 𝑃 = 𝐻
28 bnj1312.11 . . . . . . . . 9 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
29 bnj1312.12 . . . . . . . . 9 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
3021, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29bnj1489 35034 . . . . . . . 8 (𝜒𝑄 ∈ V)
31 bnj1312.13 . . . . . . . . . . 11 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
32 bnj1312.14 . . . . . . . . . . 11 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
3310, 3bnj835 34737 . . . . . . . . . . . . . 14 (𝜒𝑅 FrSe 𝐴)
3421, 22, 23, 24, 1, 2, 10, 25, 26, 27bnj1384 35010 . . . . . . . . . . . . . 14 (𝑅 FrSe 𝐴 → Fun 𝑃)
3533, 34syl 17 . . . . . . . . . . . . 13 (𝜒 → Fun 𝑃)
3621, 22, 23, 24, 1, 2, 10, 25, 26, 27bnj1415 35016 . . . . . . . . . . . . 13 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
3735, 36bnj1422 34815 . . . . . . . . . . . 12 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
3821, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 36bnj1416 35017 . . . . . . . . . . . . . 14 (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
3921, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 35, 38, 36bnj1421 35020 . . . . . . . . . . . . 13 (𝜒 → Fun 𝑄)
4039, 38bnj1422 34815 . . . . . . . . . . . 12 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
4121, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 31, 32, 37, 40bnj1423 35029 . . . . . . . . . . 11 (𝜒 → ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))
4232fneq2i 6679 . . . . . . . . . . . 12 (𝑄 Fn 𝐸𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
4340, 42sylibr 234 . . . . . . . . . . 11 (𝜒𝑄 Fn 𝐸)
4421, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 31, 32bnj1452 35030 . . . . . . . . . . 11 (𝜒𝐸𝐵)
4521, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 31, 32, 30, 41, 43, 44bnj1463 35033 . . . . . . . . . 10 (𝜒𝑄𝐶)
4645, 38jca 511 . . . . . . . . 9 (𝜒 → (𝑄𝐶 ∧ dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
4721, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 46bnj1491 35035 . . . . . . . 8 ((𝜒𝑄 ∈ V) → ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
4830, 47mpdan 686 . . . . . . 7 (𝜒 → ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
4948, 24bnj1198 34773 . . . . . 6 (𝜒 → ∃𝑓𝜏)
5020, 49nsyl3 138 . . . . 5 (𝜒 → ¬ 𝑥𝐷)
5118, 19, 50bnj1304 34797 . . . 4 ¬ 𝜓
522, 51bnj1541 34834 . . 3 (𝑅 FrSe 𝐴𝐷 = ∅)
531, 52bnj1476 34825 . 2 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝜏)
5424exbii 1846 . . . 4 (∃𝑓𝜏 ↔ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
55 df-rex 3077 . . . 4 (∃𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
5654, 55bitr4i 278 . . 3 (∃𝑓𝜏 ↔ ∃𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
5756ralbii 3099 . 2 (∀𝑥𝐴𝑓𝜏 ↔ ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
5853, 57sylib 218 1 (𝑅 FrSe 𝐴 → ∀𝑥𝐴𝑓𝐶 dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  [wsbc 3804  cun 3974  wss 3976  c0 4352  {csn 4648  cop 4654   cuni 4931   class class class wbr 5166  dom cdm 5700  cres 5702  Fun wfun 6569   Fn wfn 6570  cfv 6575   predc-bnj14 34666   FrSe w-bnj15 34670   trClc-bnj18 34672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-reg 9663  ax-inf2 9712
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-om 7906  df-1o 8524  df-bnj17 34665  df-bnj14 34667  df-bnj13 34669  df-bnj15 34671  df-bnj18 34673  df-bnj19 34675
This theorem is referenced by:  bnj1493  35037
  Copyright terms: Public domain W3C validator