Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1542 Structured version   Visualization version   GIF version

Theorem bnj1542 32239
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1542.1 (𝜑𝐹 Fn 𝐴)
bnj1542.2 (𝜑𝐺 Fn 𝐴)
bnj1542.3 (𝜑𝐹𝐺)
bnj1542.4 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
Assertion
Ref Expression
bnj1542 (𝜑 → ∃𝑥𝐴 (𝐹𝑥) ≠ (𝐺𝑥))
Distinct variable groups:   𝑥,𝐴   𝑤,𝐹   𝑤,𝐺,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐴(𝑤)   𝐹(𝑥)

Proof of Theorem bnj1542
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bnj1542.3 . . 3 (𝜑𝐹𝐺)
2 bnj1542.1 . . . 4 (𝜑𝐹 Fn 𝐴)
3 bnj1542.2 . . . 4 (𝜑𝐺 Fn 𝐴)
4 eqfnfv 6779 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑦𝐴 (𝐹𝑦) = (𝐺𝑦)))
54necon3abid 3023 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹𝐺 ↔ ¬ ∀𝑦𝐴 (𝐹𝑦) = (𝐺𝑦)))
6 df-ne 2988 . . . . . . 7 ((𝐹𝑦) ≠ (𝐺𝑦) ↔ ¬ (𝐹𝑦) = (𝐺𝑦))
76rexbii 3210 . . . . . 6 (∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦) ↔ ∃𝑦𝐴 ¬ (𝐹𝑦) = (𝐺𝑦))
8 rexnal 3201 . . . . . 6 (∃𝑦𝐴 ¬ (𝐹𝑦) = (𝐺𝑦) ↔ ¬ ∀𝑦𝐴 (𝐹𝑦) = (𝐺𝑦))
97, 8bitri 278 . . . . 5 (∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦) ↔ ¬ ∀𝑦𝐴 (𝐹𝑦) = (𝐺𝑦))
105, 9syl6bbr 292 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹𝐺 ↔ ∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦)))
112, 3, 10syl2anc 587 . . 3 (𝜑 → (𝐹𝐺 ↔ ∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦)))
121, 11mpbid 235 . 2 (𝜑 → ∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦))
13 nfv 1915 . . 3 𝑦(𝐹𝑥) ≠ (𝐺𝑥)
14 bnj1542.4 . . . . . 6 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
1514nfcii 2940 . . . . 5 𝑥𝐹
16 nfcv 2955 . . . . 5 𝑥𝑦
1715, 16nffv 6655 . . . 4 𝑥(𝐹𝑦)
18 nfcv 2955 . . . 4 𝑥(𝐺𝑦)
1917, 18nfne 3087 . . 3 𝑥(𝐹𝑦) ≠ (𝐺𝑦)
20 fveq2 6645 . . . 4 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
21 fveq2 6645 . . . 4 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
2220, 21neeq12d 3048 . . 3 (𝑥 = 𝑦 → ((𝐹𝑥) ≠ (𝐺𝑥) ↔ (𝐹𝑦) ≠ (𝐺𝑦)))
2313, 19, 22cbvrexw 3388 . 2 (∃𝑥𝐴 (𝐹𝑥) ≠ (𝐺𝑥) ↔ ∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦))
2412, 23sylibr 237 1 (𝜑 → ∃𝑥𝐴 (𝐹𝑥) ≠ (𝐺𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107   Fn wfn 6319  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332
This theorem is referenced by:  bnj1523  32453
  Copyright terms: Public domain W3C validator