Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1542 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1542.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
bnj1542.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
bnj1542.3 | ⊢ (𝜑 → 𝐹 ≠ 𝐺) |
bnj1542.4 | ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) |
Ref | Expression |
---|---|
bnj1542 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ≠ (𝐺‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1542.3 | . . 3 ⊢ (𝜑 → 𝐹 ≠ 𝐺) | |
2 | bnj1542.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
3 | bnj1542.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
4 | eqfnfv 6891 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘𝑦))) | |
5 | 4 | necon3abid 2979 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 ≠ 𝐺 ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘𝑦))) |
6 | df-ne 2943 | . . . . . . 7 ⊢ ((𝐹‘𝑦) ≠ (𝐺‘𝑦) ↔ ¬ (𝐹‘𝑦) = (𝐺‘𝑦)) | |
7 | 6 | rexbii 3177 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦) ↔ ∃𝑦 ∈ 𝐴 ¬ (𝐹‘𝑦) = (𝐺‘𝑦)) |
8 | rexnal 3165 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 ¬ (𝐹‘𝑦) = (𝐺‘𝑦) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘𝑦)) | |
9 | 7, 8 | bitri 274 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘𝑦)) |
10 | 5, 9 | bitr4di 288 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 ≠ 𝐺 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦))) |
11 | 2, 3, 10 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐹 ≠ 𝐺 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦))) |
12 | 1, 11 | mpbid 231 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦)) |
13 | nfv 1918 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) ≠ (𝐺‘𝑥) | |
14 | bnj1542.4 | . . . . . 6 ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) | |
15 | 14 | nfcii 2890 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
16 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
17 | 15, 16 | nffv 6766 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
18 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥(𝐺‘𝑦) | |
19 | 17, 18 | nfne 3044 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) ≠ (𝐺‘𝑦) |
20 | fveq2 6756 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
21 | fveq2 6756 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐺‘𝑥) = (𝐺‘𝑦)) | |
22 | 20, 21 | neeq12d 3004 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ (𝐹‘𝑦) ≠ (𝐺‘𝑦))) |
23 | 13, 19, 22 | cbvrexw 3364 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦)) |
24 | 12, 23 | sylibr 233 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ≠ (𝐺‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: bnj1523 32951 |
Copyright terms: Public domain | W3C validator |