Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1542 Structured version   Visualization version   GIF version

Theorem bnj1542 34869
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1542.1 (𝜑𝐹 Fn 𝐴)
bnj1542.2 (𝜑𝐺 Fn 𝐴)
bnj1542.3 (𝜑𝐹𝐺)
bnj1542.4 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
Assertion
Ref Expression
bnj1542 (𝜑 → ∃𝑥𝐴 (𝐹𝑥) ≠ (𝐺𝑥))
Distinct variable groups:   𝑥,𝐴   𝑤,𝐹   𝑤,𝐺,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐴(𝑤)   𝐹(𝑥)

Proof of Theorem bnj1542
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bnj1542.3 . . 3 (𝜑𝐹𝐺)
2 bnj1542.1 . . . 4 (𝜑𝐹 Fn 𝐴)
3 bnj1542.2 . . . 4 (𝜑𝐺 Fn 𝐴)
4 eqfnfv 6964 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑦𝐴 (𝐹𝑦) = (𝐺𝑦)))
54necon3abid 2964 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹𝐺 ↔ ¬ ∀𝑦𝐴 (𝐹𝑦) = (𝐺𝑦)))
6 df-ne 2929 . . . . . . 7 ((𝐹𝑦) ≠ (𝐺𝑦) ↔ ¬ (𝐹𝑦) = (𝐺𝑦))
76rexbii 3079 . . . . . 6 (∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦) ↔ ∃𝑦𝐴 ¬ (𝐹𝑦) = (𝐺𝑦))
8 rexnal 3084 . . . . . 6 (∃𝑦𝐴 ¬ (𝐹𝑦) = (𝐺𝑦) ↔ ¬ ∀𝑦𝐴 (𝐹𝑦) = (𝐺𝑦))
97, 8bitri 275 . . . . 5 (∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦) ↔ ¬ ∀𝑦𝐴 (𝐹𝑦) = (𝐺𝑦))
105, 9bitr4di 289 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹𝐺 ↔ ∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦)))
112, 3, 10syl2anc 584 . . 3 (𝜑 → (𝐹𝐺 ↔ ∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦)))
121, 11mpbid 232 . 2 (𝜑 → ∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦))
13 nfv 1915 . . 3 𝑦(𝐹𝑥) ≠ (𝐺𝑥)
14 bnj1542.4 . . . . . 6 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
1514nfcii 2883 . . . . 5 𝑥𝐹
16 nfcv 2894 . . . . 5 𝑥𝑦
1715, 16nffv 6832 . . . 4 𝑥(𝐹𝑦)
18 nfcv 2894 . . . 4 𝑥(𝐺𝑦)
1917, 18nfne 3029 . . 3 𝑥(𝐹𝑦) ≠ (𝐺𝑦)
20 fveq2 6822 . . . 4 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
21 fveq2 6822 . . . 4 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
2220, 21neeq12d 2989 . . 3 (𝑥 = 𝑦 → ((𝐹𝑥) ≠ (𝐺𝑥) ↔ (𝐹𝑦) ≠ (𝐺𝑦)))
2313, 19, 22cbvrexw 3275 . 2 (∃𝑥𝐴 (𝐹𝑥) ≠ (𝐺𝑥) ↔ ∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦))
2412, 23sylibr 234 1 (𝜑 → ∃𝑥𝐴 (𝐹𝑥) ≠ (𝐺𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056   Fn wfn 6476  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  bnj1523  35083
  Copyright terms: Public domain W3C validator