Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1542 Structured version   Visualization version   GIF version

Theorem bnj1542 34833
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1542.1 (𝜑𝐹 Fn 𝐴)
bnj1542.2 (𝜑𝐺 Fn 𝐴)
bnj1542.3 (𝜑𝐹𝐺)
bnj1542.4 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
Assertion
Ref Expression
bnj1542 (𝜑 → ∃𝑥𝐴 (𝐹𝑥) ≠ (𝐺𝑥))
Distinct variable groups:   𝑥,𝐴   𝑤,𝐹   𝑤,𝐺,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐴(𝑤)   𝐹(𝑥)

Proof of Theorem bnj1542
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bnj1542.3 . . 3 (𝜑𝐹𝐺)
2 bnj1542.1 . . . 4 (𝜑𝐹 Fn 𝐴)
3 bnj1542.2 . . . 4 (𝜑𝐺 Fn 𝐴)
4 eqfnfv 7064 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑦𝐴 (𝐹𝑦) = (𝐺𝑦)))
54necon3abid 2983 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹𝐺 ↔ ¬ ∀𝑦𝐴 (𝐹𝑦) = (𝐺𝑦)))
6 df-ne 2947 . . . . . . 7 ((𝐹𝑦) ≠ (𝐺𝑦) ↔ ¬ (𝐹𝑦) = (𝐺𝑦))
76rexbii 3100 . . . . . 6 (∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦) ↔ ∃𝑦𝐴 ¬ (𝐹𝑦) = (𝐺𝑦))
8 rexnal 3106 . . . . . 6 (∃𝑦𝐴 ¬ (𝐹𝑦) = (𝐺𝑦) ↔ ¬ ∀𝑦𝐴 (𝐹𝑦) = (𝐺𝑦))
97, 8bitri 275 . . . . 5 (∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦) ↔ ¬ ∀𝑦𝐴 (𝐹𝑦) = (𝐺𝑦))
105, 9bitr4di 289 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹𝐺 ↔ ∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦)))
112, 3, 10syl2anc 583 . . 3 (𝜑 → (𝐹𝐺 ↔ ∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦)))
121, 11mpbid 232 . 2 (𝜑 → ∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦))
13 nfv 1913 . . 3 𝑦(𝐹𝑥) ≠ (𝐺𝑥)
14 bnj1542.4 . . . . . 6 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
1514nfcii 2897 . . . . 5 𝑥𝐹
16 nfcv 2908 . . . . 5 𝑥𝑦
1715, 16nffv 6930 . . . 4 𝑥(𝐹𝑦)
18 nfcv 2908 . . . 4 𝑥(𝐺𝑦)
1917, 18nfne 3049 . . 3 𝑥(𝐹𝑦) ≠ (𝐺𝑦)
20 fveq2 6920 . . . 4 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
21 fveq2 6920 . . . 4 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
2220, 21neeq12d 3008 . . 3 (𝑥 = 𝑦 → ((𝐹𝑥) ≠ (𝐺𝑥) ↔ (𝐹𝑦) ≠ (𝐺𝑦)))
2313, 19, 22cbvrexw 3313 . 2 (∃𝑥𝐴 (𝐹𝑥) ≠ (𝐺𝑥) ↔ ∃𝑦𝐴 (𝐹𝑦) ≠ (𝐺𝑦))
2412, 23sylibr 234 1 (𝜑 → ∃𝑥𝐴 (𝐹𝑥) ≠ (𝐺𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  bnj1523  35047
  Copyright terms: Public domain W3C validator