![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1542 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1542.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
bnj1542.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
bnj1542.3 | ⊢ (𝜑 → 𝐹 ≠ 𝐺) |
bnj1542.4 | ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) |
Ref | Expression |
---|---|
bnj1542 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ≠ (𝐺‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1542.3 | . . 3 ⊢ (𝜑 → 𝐹 ≠ 𝐺) | |
2 | bnj1542.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
3 | bnj1542.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
4 | eqfnfv 7051 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘𝑦))) | |
5 | 4 | necon3abid 2975 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 ≠ 𝐺 ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘𝑦))) |
6 | df-ne 2939 | . . . . . . 7 ⊢ ((𝐹‘𝑦) ≠ (𝐺‘𝑦) ↔ ¬ (𝐹‘𝑦) = (𝐺‘𝑦)) | |
7 | 6 | rexbii 3092 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦) ↔ ∃𝑦 ∈ 𝐴 ¬ (𝐹‘𝑦) = (𝐺‘𝑦)) |
8 | rexnal 3098 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 ¬ (𝐹‘𝑦) = (𝐺‘𝑦) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘𝑦)) | |
9 | 7, 8 | bitri 275 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘𝑦)) |
10 | 5, 9 | bitr4di 289 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 ≠ 𝐺 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦))) |
11 | 2, 3, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 ≠ 𝐺 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦))) |
12 | 1, 11 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦)) |
13 | nfv 1912 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) ≠ (𝐺‘𝑥) | |
14 | bnj1542.4 | . . . . . 6 ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) | |
15 | 14 | nfcii 2892 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
16 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
17 | 15, 16 | nffv 6917 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
18 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥(𝐺‘𝑦) | |
19 | 17, 18 | nfne 3041 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) ≠ (𝐺‘𝑦) |
20 | fveq2 6907 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
21 | fveq2 6907 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐺‘𝑥) = (𝐺‘𝑦)) | |
22 | 20, 21 | neeq12d 3000 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ (𝐹‘𝑦) ≠ (𝐺‘𝑦))) |
23 | 13, 19, 22 | cbvrexw 3305 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦)) |
24 | 12, 23 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ≠ (𝐺‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 Fn wfn 6558 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: bnj1523 35064 |
Copyright terms: Public domain | W3C validator |