| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1542 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1542.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| bnj1542.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| bnj1542.3 | ⊢ (𝜑 → 𝐹 ≠ 𝐺) |
| bnj1542.4 | ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| bnj1542 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ≠ (𝐺‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1542.3 | . . 3 ⊢ (𝜑 → 𝐹 ≠ 𝐺) | |
| 2 | bnj1542.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 3 | bnj1542.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
| 4 | eqfnfv 6964 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘𝑦))) | |
| 5 | 4 | necon3abid 2964 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 ≠ 𝐺 ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘𝑦))) |
| 6 | df-ne 2929 | . . . . . . 7 ⊢ ((𝐹‘𝑦) ≠ (𝐺‘𝑦) ↔ ¬ (𝐹‘𝑦) = (𝐺‘𝑦)) | |
| 7 | 6 | rexbii 3079 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦) ↔ ∃𝑦 ∈ 𝐴 ¬ (𝐹‘𝑦) = (𝐺‘𝑦)) |
| 8 | rexnal 3084 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 ¬ (𝐹‘𝑦) = (𝐺‘𝑦) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘𝑦)) | |
| 9 | 7, 8 | bitri 275 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘𝑦)) |
| 10 | 5, 9 | bitr4di 289 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 ≠ 𝐺 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦))) |
| 11 | 2, 3, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 ≠ 𝐺 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦))) |
| 12 | 1, 11 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦)) |
| 13 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) ≠ (𝐺‘𝑥) | |
| 14 | bnj1542.4 | . . . . . 6 ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) | |
| 15 | 14 | nfcii 2883 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
| 16 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 17 | 15, 16 | nffv 6832 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 18 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥(𝐺‘𝑦) | |
| 19 | 17, 18 | nfne 3029 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) ≠ (𝐺‘𝑦) |
| 20 | fveq2 6822 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 21 | fveq2 6822 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐺‘𝑥) = (𝐺‘𝑦)) | |
| 22 | 20, 21 | neeq12d 2989 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ (𝐹‘𝑦) ≠ (𝐺‘𝑦))) |
| 23 | 13, 19, 22 | cbvrexw 3275 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) ≠ (𝐺‘𝑦)) |
| 24 | 12, 23 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ≠ (𝐺‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: bnj1523 35083 |
| Copyright terms: Public domain | W3C validator |