Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1523 Structured version   Visualization version   GIF version

Theorem bnj1523 32453
Description: Technical lemma for bnj1522 32454. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1523.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1523.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1523.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1523.4 𝐹 = 𝐶
bnj1523.5 (𝜑 ↔ (𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
bnj1523.6 (𝜓 ↔ (𝜑𝐹𝐻))
bnj1523.7 (𝜒 ↔ (𝜓𝑥𝐴 ∧ (𝐹𝑥) ≠ (𝐻𝑥)))
bnj1523.8 𝐷 = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)}
bnj1523.9 (𝜃 ↔ (𝜒𝑦𝐷 ∧ ∀𝑧𝐷 ¬ 𝑧𝑅𝑦))
Assertion
Ref Expression
bnj1523 ((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) → 𝐹 = 𝐻)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝑦,𝐴,𝑧,𝑥   𝐵,𝑓   𝑦,𝐷,𝑧   𝑦,𝐹,𝑧   𝐺,𝑑,𝑓,𝑥   𝑦,𝐺   𝑥,𝐻,𝑦,𝑧   𝑅,𝑑,𝑓,𝑥   𝑦,𝑅,𝑧   𝑌,𝑑   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑧,𝑓,𝑑)   𝜃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝐺(𝑧)   𝐻(𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓)

Proof of Theorem bnj1523
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1523.5 . 2 (𝜑 ↔ (𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
2 bnj1523.6 . . 3 (𝜓 ↔ (𝜑𝐹𝐻))
3 bnj1523.9 . . . . . . . . . . . . 13 (𝜃 ↔ (𝜒𝑦𝐷 ∧ ∀𝑧𝐷 ¬ 𝑧𝑅𝑦))
4 bnj1523.7 . . . . . . . . . . . . . 14 (𝜒 ↔ (𝜓𝑥𝐴 ∧ (𝐹𝑥) ≠ (𝐻𝑥)))
5 bnj1523.1 . . . . . . . . . . . . . . . . 17 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
6 bnj1523.2 . . . . . . . . . . . . . . . . 17 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
7 bnj1523.3 . . . . . . . . . . . . . . . . 17 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
8 bnj1523.4 . . . . . . . . . . . . . . . . 17 𝐹 = 𝐶
95, 6, 7, 8bnj60 32444 . . . . . . . . . . . . . . . 16 (𝑅 FrSe 𝐴𝐹 Fn 𝐴)
101, 9bnj835 32140 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝐴)
112, 10bnj832 32139 . . . . . . . . . . . . . 14 (𝜓𝐹 Fn 𝐴)
124, 11bnj835 32140 . . . . . . . . . . . . 13 (𝜒𝐹 Fn 𝐴)
133, 12bnj835 32140 . . . . . . . . . . . 12 (𝜃𝐹 Fn 𝐴)
141simp2bi 1143 . . . . . . . . . . . . . . 15 (𝜑𝐻 Fn 𝐴)
152, 14bnj832 32139 . . . . . . . . . . . . . 14 (𝜓𝐻 Fn 𝐴)
164, 15bnj835 32140 . . . . . . . . . . . . 13 (𝜒𝐻 Fn 𝐴)
173, 16bnj835 32140 . . . . . . . . . . . 12 (𝜃𝐻 Fn 𝐴)
18 bnj213 32264 . . . . . . . . . . . . 13 pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴
1918a1i 11 . . . . . . . . . . . 12 (𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴)
203simp3bi 1144 . . . . . . . . . . . . . . . . 17 (𝜃 → ∀𝑧𝐷 ¬ 𝑧𝑅𝑦)
2120bnj1211 32179 . . . . . . . . . . . . . . . 16 (𝜃 → ∀𝑧(𝑧𝐷 → ¬ 𝑧𝑅𝑦))
22 con2b 363 . . . . . . . . . . . . . . . . 17 ((𝑧𝐷 → ¬ 𝑧𝑅𝑦) ↔ (𝑧𝑅𝑦 → ¬ 𝑧𝐷))
2322albii 1821 . . . . . . . . . . . . . . . 16 (∀𝑧(𝑧𝐷 → ¬ 𝑧𝑅𝑦) ↔ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝐷))
2421, 23sylib 221 . . . . . . . . . . . . . . 15 (𝜃 → ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝐷))
25 bnj1418 32422 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → 𝑧𝑅𝑦)
2625imim1i 63 . . . . . . . . . . . . . . . 16 ((𝑧𝑅𝑦 → ¬ 𝑧𝐷) → (𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → ¬ 𝑧𝐷))
2726alimi 1813 . . . . . . . . . . . . . . 15 (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝐷) → ∀𝑧(𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → ¬ 𝑧𝐷))
2824, 27syl 17 . . . . . . . . . . . . . 14 (𝜃 → ∀𝑧(𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → ¬ 𝑧𝐷))
2928bnj1142 32171 . . . . . . . . . . . . 13 (𝜃 → ∀𝑧 ∈ pred (𝑦, 𝐴, 𝑅) ¬ 𝑧𝐷)
30 bnj1523.8 . . . . . . . . . . . . . 14 𝐷 = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐻𝑥)}
315bnj1309 32404 . . . . . . . . . . . . . . . . . . 19 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
327, 31bnj1307 32405 . . . . . . . . . . . . . . . . . 18 (𝑤𝐶 → ∀𝑥 𝑤𝐶)
3332nfcii 2940 . . . . . . . . . . . . . . . . 17 𝑥𝐶
3433nfuni 4807 . . . . . . . . . . . . . . . 16 𝑥 𝐶
358, 34nfcxfr 2953 . . . . . . . . . . . . . . 15 𝑥𝐹
3635nfcrii 2948 . . . . . . . . . . . . . 14 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
3730, 36bnj1534 32235 . . . . . . . . . . . . 13 𝐷 = {𝑧𝐴 ∣ (𝐹𝑧) ≠ (𝐻𝑧)}
3829, 18, 37bnj1533 32234 . . . . . . . . . . . 12 (𝜃 → ∀𝑧 ∈ pred (𝑦, 𝐴, 𝑅)(𝐹𝑧) = (𝐻𝑧))
3913, 17, 19, 38bnj1536 32236 . . . . . . . . . . 11 (𝜃 → (𝐹 ↾ pred(𝑦, 𝐴, 𝑅)) = (𝐻 ↾ pred(𝑦, 𝐴, 𝑅)))
4039opeq2d 4772 . . . . . . . . . 10 (𝜃 → ⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩ = ⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩)
4140fveq2d 6649 . . . . . . . . 9 (𝜃 → (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩) = (𝐺‘⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
425, 6, 7, 8bnj1500 32450 . . . . . . . . . . . . . . 15 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
431, 42bnj835 32140 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
442, 43bnj832 32139 . . . . . . . . . . . . 13 (𝜓 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
454, 44bnj835 32140 . . . . . . . . . . . 12 (𝜒 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
4645, 36bnj1529 32452 . . . . . . . . . . 11 (𝜒 → ∀𝑦𝐴 (𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
473, 46bnj835 32140 . . . . . . . . . 10 (𝜃 → ∀𝑦𝐴 (𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
4830ssrab3 4008 . . . . . . . . . . 11 𝐷𝐴
493simp2bi 1143 . . . . . . . . . . 11 (𝜃𝑦𝐷)
5048, 49bnj1213 32180 . . . . . . . . . 10 (𝜃𝑦𝐴)
5147, 50bnj1294 32199 . . . . . . . . 9 (𝜃 → (𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
521simp3bi 1144 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
532, 52bnj832 32139 . . . . . . . . . . . . 13 (𝜓 → ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
544, 53bnj835 32140 . . . . . . . . . . . 12 (𝜒 → ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
55 ax-5 1911 . . . . . . . . . . . 12 (𝑣𝐻 → ∀𝑥 𝑣𝐻)
5654, 55bnj1529 32452 . . . . . . . . . . 11 (𝜒 → ∀𝑦𝐴 (𝐻𝑦) = (𝐺‘⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
573, 56bnj835 32140 . . . . . . . . . 10 (𝜃 → ∀𝑦𝐴 (𝐻𝑦) = (𝐺‘⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
5857, 50bnj1294 32199 . . . . . . . . 9 (𝜃 → (𝐻𝑦) = (𝐺‘⟨𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
5941, 51, 583eqtr4d 2843 . . . . . . . 8 (𝜃 → (𝐹𝑦) = (𝐻𝑦))
6030, 36bnj1534 32235 . . . . . . . . . . 11 𝐷 = {𝑦𝐴 ∣ (𝐹𝑦) ≠ (𝐻𝑦)}
6160bnj1538 32237 . . . . . . . . . 10 (𝑦𝐷 → (𝐹𝑦) ≠ (𝐻𝑦))
623, 61bnj836 32141 . . . . . . . . 9 (𝜃 → (𝐹𝑦) ≠ (𝐻𝑦))
6362neneqd 2992 . . . . . . . 8 (𝜃 → ¬ (𝐹𝑦) = (𝐻𝑦))
6459, 63pm2.65i 197 . . . . . . 7 ¬ 𝜃
6564nex 1802 . . . . . 6 ¬ ∃𝑦𝜃
661simp1bi 1142 . . . . . . . . . 10 (𝜑𝑅 FrSe 𝐴)
672, 66bnj832 32139 . . . . . . . . 9 (𝜓𝑅 FrSe 𝐴)
684, 67bnj835 32140 . . . . . . . 8 (𝜒𝑅 FrSe 𝐴)
6948a1i 11 . . . . . . . 8 (𝜒𝐷𝐴)
704simp2bi 1143 . . . . . . . . . 10 (𝜒𝑥𝐴)
714simp3bi 1144 . . . . . . . . . 10 (𝜒 → (𝐹𝑥) ≠ (𝐻𝑥))
7230rabeq2i 3435 . . . . . . . . . 10 (𝑥𝐷 ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ (𝐻𝑥)))
7370, 71, 72sylanbrc 586 . . . . . . . . 9 (𝜒𝑥𝐷)
7473ne0d 4251 . . . . . . . 8 (𝜒𝐷 ≠ ∅)
75 bnj69 32392 . . . . . . . 8 ((𝑅 FrSe 𝐴𝐷𝐴𝐷 ≠ ∅) → ∃𝑦𝐷𝑧𝐷 ¬ 𝑧𝑅𝑦)
7668, 69, 74, 75syl3anc 1368 . . . . . . 7 (𝜒 → ∃𝑦𝐷𝑧𝐷 ¬ 𝑧𝑅𝑦)
7776, 3bnj1209 32178 . . . . . 6 (𝜒 → ∃𝑦𝜃)
7865, 77mto 200 . . . . 5 ¬ 𝜒
7978nex 1802 . . . 4 ¬ ∃𝑥𝜒
802simprbi 500 . . . . . 6 (𝜓𝐹𝐻)
8111, 15, 80, 36bnj1542 32239 . . . . 5 (𝜓 → ∃𝑥𝐴 (𝐹𝑥) ≠ (𝐻𝑥))
825, 6, 7, 8, 1, 2bnj1525 32451 . . . . 5 (𝜓 → ∀𝑥𝜓)
8381, 4, 82bnj1521 32233 . . . 4 (𝜓 → ∃𝑥𝜒)
8479, 83mto 200 . . 3 ¬ 𝜓
852, 84bnj1541 32238 . 2 (𝜑𝐹 = 𝐻)
861, 85sylbir 238 1 ((𝑅 FrSe 𝐴𝐻 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐻𝑥) = (𝐺‘⟨𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) → 𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2111  {cab 2776  wne 2987  wral 3106  wrex 3107  {crab 3110  wss 3881  c0 4243  cop 4531   cuni 4800   class class class wbr 5030  cres 5521   Fn wfn 6319  cfv 6324   predc-bnj14 32068   FrSe w-bnj15 32072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-bnj17 32067  df-bnj14 32069  df-bnj13 32071  df-bnj15 32073  df-bnj18 32075  df-bnj19 32077
This theorem is referenced by:  bnj1522  32454
  Copyright terms: Public domain W3C validator