| Step | Hyp | Ref
| Expression |
| 1 | | bnj1523.5 |
. 2
⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐺‘〈𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))〉))) |
| 2 | | bnj1523.6 |
. . 3
⊢ (𝜓 ↔ (𝜑 ∧ 𝐹 ≠ 𝐻)) |
| 3 | | bnj1523.9 |
. . . . . . . . . . . . 13
⊢ (𝜃 ↔ (𝜒 ∧ 𝑦 ∈ 𝐷 ∧ ∀𝑧 ∈ 𝐷 ¬ 𝑧𝑅𝑦)) |
| 4 | | bnj1523.7 |
. . . . . . . . . . . . . 14
⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ (𝐻‘𝑥))) |
| 5 | | bnj1523.1 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| 6 | | bnj1523.2 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| 7 | | bnj1523.3 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| 8 | | bnj1523.4 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐹 = ∪
𝐶 |
| 9 | 5, 6, 7, 8 | bnj60 35076 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴) |
| 10 | 1, 9 | bnj835 34773 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 11 | 2, 10 | bnj832 34772 |
. . . . . . . . . . . . . 14
⊢ (𝜓 → 𝐹 Fn 𝐴) |
| 12 | 4, 11 | bnj835 34773 |
. . . . . . . . . . . . 13
⊢ (𝜒 → 𝐹 Fn 𝐴) |
| 13 | 3, 12 | bnj835 34773 |
. . . . . . . . . . . 12
⊢ (𝜃 → 𝐹 Fn 𝐴) |
| 14 | 1 | simp2bi 1147 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐻 Fn 𝐴) |
| 15 | 2, 14 | bnj832 34772 |
. . . . . . . . . . . . . 14
⊢ (𝜓 → 𝐻 Fn 𝐴) |
| 16 | 4, 15 | bnj835 34773 |
. . . . . . . . . . . . 13
⊢ (𝜒 → 𝐻 Fn 𝐴) |
| 17 | 3, 16 | bnj835 34773 |
. . . . . . . . . . . 12
⊢ (𝜃 → 𝐻 Fn 𝐴) |
| 18 | | bnj213 34896 |
. . . . . . . . . . . . 13
⊢
pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴 |
| 19 | 18 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ 𝐴) |
| 20 | 3 | simp3bi 1148 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜃 → ∀𝑧 ∈ 𝐷 ¬ 𝑧𝑅𝑦) |
| 21 | 20 | bnj1211 34811 |
. . . . . . . . . . . . . . . 16
⊢ (𝜃 → ∀𝑧(𝑧 ∈ 𝐷 → ¬ 𝑧𝑅𝑦)) |
| 22 | | con2b 359 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ 𝐷 → ¬ 𝑧𝑅𝑦) ↔ (𝑧𝑅𝑦 → ¬ 𝑧 ∈ 𝐷)) |
| 23 | 22 | albii 1819 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑧(𝑧 ∈ 𝐷 → ¬ 𝑧𝑅𝑦) ↔ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ 𝐷)) |
| 24 | 21, 23 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (𝜃 → ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ 𝐷)) |
| 25 | | bnj1418 35054 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → 𝑧𝑅𝑦) |
| 26 | 25 | imim1i 63 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧𝑅𝑦 → ¬ 𝑧 ∈ 𝐷) → (𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → ¬ 𝑧 ∈ 𝐷)) |
| 27 | 26 | alimi 1811 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ 𝐷) → ∀𝑧(𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → ¬ 𝑧 ∈ 𝐷)) |
| 28 | 24, 27 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜃 → ∀𝑧(𝑧 ∈ pred(𝑦, 𝐴, 𝑅) → ¬ 𝑧 ∈ 𝐷)) |
| 29 | 28 | bnj1142 34803 |
. . . . . . . . . . . . 13
⊢ (𝜃 → ∀𝑧 ∈ pred (𝑦, 𝐴, 𝑅) ¬ 𝑧 ∈ 𝐷) |
| 30 | | bnj1523.8 |
. . . . . . . . . . . . . 14
⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐻‘𝑥)} |
| 31 | 5 | bnj1309 35036 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ 𝐵 → ∀𝑥 𝑤 ∈ 𝐵) |
| 32 | 7, 31 | bnj1307 35037 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ 𝐶 → ∀𝑥 𝑤 ∈ 𝐶) |
| 33 | 32 | nfcii 2894 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥𝐶 |
| 34 | 33 | nfuni 4914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥∪ 𝐶 |
| 35 | 8, 34 | nfcxfr 2903 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥𝐹 |
| 36 | 35 | nfcrii 2900 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) |
| 37 | 30, 36 | bnj1534 34867 |
. . . . . . . . . . . . 13
⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ (𝐹‘𝑧) ≠ (𝐻‘𝑧)} |
| 38 | 29, 18, 37 | bnj1533 34866 |
. . . . . . . . . . . 12
⊢ (𝜃 → ∀𝑧 ∈ pred (𝑦, 𝐴, 𝑅)(𝐹‘𝑧) = (𝐻‘𝑧)) |
| 39 | 13, 17, 19, 38 | bnj1536 34868 |
. . . . . . . . . . 11
⊢ (𝜃 → (𝐹 ↾ pred(𝑦, 𝐴, 𝑅)) = (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))) |
| 40 | 39 | opeq2d 4880 |
. . . . . . . . . 10
⊢ (𝜃 → 〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉 = 〈𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))〉) |
| 41 | 40 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝜃 → (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉) = (𝐺‘〈𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
| 42 | 5, 6, 7, 8 | bnj1500 35082 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
| 43 | 1, 42 | bnj835 34773 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
| 44 | 2, 43 | bnj832 34772 |
. . . . . . . . . . . . 13
⊢ (𝜓 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
| 45 | 4, 44 | bnj835 34773 |
. . . . . . . . . . . 12
⊢ (𝜒 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
| 46 | 45, 36 | bnj1529 35084 |
. . . . . . . . . . 11
⊢ (𝜒 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
| 47 | 3, 46 | bnj835 34773 |
. . . . . . . . . 10
⊢ (𝜃 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
| 48 | 30 | ssrab3 4082 |
. . . . . . . . . . 11
⊢ 𝐷 ⊆ 𝐴 |
| 49 | 3 | simp2bi 1147 |
. . . . . . . . . . 11
⊢ (𝜃 → 𝑦 ∈ 𝐷) |
| 50 | 48, 49 | bnj1213 34812 |
. . . . . . . . . 10
⊢ (𝜃 → 𝑦 ∈ 𝐴) |
| 51 | 47, 50 | bnj1294 34831 |
. . . . . . . . 9
⊢ (𝜃 → (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
| 52 | 1 | simp3bi 1148 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐺‘〈𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
| 53 | 2, 52 | bnj832 34772 |
. . . . . . . . . . . . 13
⊢ (𝜓 → ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐺‘〈𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
| 54 | 4, 53 | bnj835 34773 |
. . . . . . . . . . . 12
⊢ (𝜒 → ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐺‘〈𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
| 55 | | ax-5 1910 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ 𝐻 → ∀𝑥 𝑣 ∈ 𝐻) |
| 56 | 54, 55 | bnj1529 35084 |
. . . . . . . . . . 11
⊢ (𝜒 → ∀𝑦 ∈ 𝐴 (𝐻‘𝑦) = (𝐺‘〈𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
| 57 | 3, 56 | bnj835 34773 |
. . . . . . . . . 10
⊢ (𝜃 → ∀𝑦 ∈ 𝐴 (𝐻‘𝑦) = (𝐺‘〈𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
| 58 | 57, 50 | bnj1294 34831 |
. . . . . . . . 9
⊢ (𝜃 → (𝐻‘𝑦) = (𝐺‘〈𝑦, (𝐻 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
| 59 | 41, 51, 58 | 3eqtr4d 2787 |
. . . . . . . 8
⊢ (𝜃 → (𝐹‘𝑦) = (𝐻‘𝑦)) |
| 60 | 30, 36 | bnj1534 34867 |
. . . . . . . . . . 11
⊢ 𝐷 = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) ≠ (𝐻‘𝑦)} |
| 61 | 60 | bnj1538 34869 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐷 → (𝐹‘𝑦) ≠ (𝐻‘𝑦)) |
| 62 | 3, 61 | bnj836 34774 |
. . . . . . . . 9
⊢ (𝜃 → (𝐹‘𝑦) ≠ (𝐻‘𝑦)) |
| 63 | 62 | neneqd 2945 |
. . . . . . . 8
⊢ (𝜃 → ¬ (𝐹‘𝑦) = (𝐻‘𝑦)) |
| 64 | 59, 63 | pm2.65i 194 |
. . . . . . 7
⊢ ¬
𝜃 |
| 65 | 64 | nex 1800 |
. . . . . 6
⊢ ¬
∃𝑦𝜃 |
| 66 | 1 | simp1bi 1146 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 FrSe 𝐴) |
| 67 | 2, 66 | bnj832 34772 |
. . . . . . . . 9
⊢ (𝜓 → 𝑅 FrSe 𝐴) |
| 68 | 4, 67 | bnj835 34773 |
. . . . . . . 8
⊢ (𝜒 → 𝑅 FrSe 𝐴) |
| 69 | 48 | a1i 11 |
. . . . . . . 8
⊢ (𝜒 → 𝐷 ⊆ 𝐴) |
| 70 | 4 | simp2bi 1147 |
. . . . . . . . . 10
⊢ (𝜒 → 𝑥 ∈ 𝐴) |
| 71 | 4 | simp3bi 1148 |
. . . . . . . . . 10
⊢ (𝜒 → (𝐹‘𝑥) ≠ (𝐻‘𝑥)) |
| 72 | 30 | reqabi 3460 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ (𝐻‘𝑥))) |
| 73 | 70, 71, 72 | sylanbrc 583 |
. . . . . . . . 9
⊢ (𝜒 → 𝑥 ∈ 𝐷) |
| 74 | 73 | ne0d 4342 |
. . . . . . . 8
⊢ (𝜒 → 𝐷 ≠ ∅) |
| 75 | | bnj69 35024 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ 𝐷 ≠ ∅) → ∃𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝐷 ¬ 𝑧𝑅𝑦) |
| 76 | 68, 69, 74, 75 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜒 → ∃𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝐷 ¬ 𝑧𝑅𝑦) |
| 77 | 76, 3 | bnj1209 34810 |
. . . . . 6
⊢ (𝜒 → ∃𝑦𝜃) |
| 78 | 65, 77 | mto 197 |
. . . . 5
⊢ ¬
𝜒 |
| 79 | 78 | nex 1800 |
. . . 4
⊢ ¬
∃𝑥𝜒 |
| 80 | 2 | simprbi 496 |
. . . . . 6
⊢ (𝜓 → 𝐹 ≠ 𝐻) |
| 81 | 11, 15, 80, 36 | bnj1542 34871 |
. . . . 5
⊢ (𝜓 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ≠ (𝐻‘𝑥)) |
| 82 | 5, 6, 7, 8, 1, 2 | bnj1525 35083 |
. . . . 5
⊢ (𝜓 → ∀𝑥𝜓) |
| 83 | 81, 4, 82 | bnj1521 34865 |
. . . 4
⊢ (𝜓 → ∃𝑥𝜒) |
| 84 | 79, 83 | mto 197 |
. . 3
⊢ ¬
𝜓 |
| 85 | 2, 84 | bnj1541 34870 |
. 2
⊢ (𝜑 → 𝐹 = 𝐻) |
| 86 | 1, 85 | sylbir 235 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝐻 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐺‘〈𝑥, (𝐻 ↾ pred(𝑥, 𝐴, 𝑅))〉)) → 𝐹 = 𝐻) |