Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1538 Structured version   Visualization version   GIF version

Theorem bnj1538 34891
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1538.1 𝐴 = {𝑥𝐵𝜑}
Assertion
Ref Expression
bnj1538 (𝑥𝐴𝜑)

Proof of Theorem bnj1538
StepHypRef Expression
1 bnj1538.1 . . 3 𝐴 = {𝑥𝐵𝜑}
21reqabi 3444 . 2 (𝑥𝐴 ↔ (𝑥𝐵𝜑))
32simprbi 496 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421
This theorem is referenced by:  bnj1279  35054  bnj1311  35060  bnj1418  35076  bnj1312  35094  bnj1523  35107
  Copyright terms: Public domain W3C validator