Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj248 Structured version   Visualization version   GIF version

Theorem bnj248 33706
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj248 ((𝜑𝜓𝜒𝜃) ↔ (((𝜑𝜓) ∧ 𝜒) ∧ 𝜃))

Proof of Theorem bnj248
StepHypRef Expression
1 df-bnj17 33693 . 2 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
2 df-3an 1089 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
32anbi1i 624 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) ↔ (((𝜑𝜓) ∧ 𝜒) ∧ 𝜃))
41, 3bitri 274 1 ((𝜑𝜓𝜒𝜃) ↔ (((𝜑𝜓) ∧ 𝜒) ∧ 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087  w-bnj17 33692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089  df-bnj17 33693
This theorem is referenced by:  bnj253  33710  bnj256  33712  bnj605  33913  bnj908  33937
  Copyright terms: Public domain W3C validator