Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj248 Structured version   Visualization version   GIF version

Theorem bnj248 32415
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj248 ((𝜑𝜓𝜒𝜃) ↔ (((𝜑𝜓) ∧ 𝜒) ∧ 𝜃))

Proof of Theorem bnj248
StepHypRef Expression
1 df-bnj17 32402 . 2 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
2 df-3an 1091 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
32anbi1i 627 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) ↔ (((𝜑𝜓) ∧ 𝜒) ∧ 𝜃))
41, 3bitri 278 1 ((𝜑𝜓𝜒𝜃) ↔ (((𝜑𝜓) ∧ 𝜒) ∧ 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1089  w-bnj17 32401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091  df-bnj17 32402
This theorem is referenced by:  bnj253  32419  bnj256  32421  bnj605  32623  bnj908  32647
  Copyright terms: Public domain W3C validator