Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj250 Structured version   Visualization version   GIF version

Theorem bnj250 32680
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj250 ((𝜑𝜓𝜒𝜃) ↔ (𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)))

Proof of Theorem bnj250
StepHypRef Expression
1 df-bnj17 32666 . 2 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
2 3anass 1094 . . 3 ((𝜑𝜓𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
32anbi1i 624 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) ↔ ((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃))
4 anass 469 . 2 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) ↔ (𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)))
51, 3, 43bitri 297 1 ((𝜑𝜓𝜒𝜃) ↔ (𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086  w-bnj17 32665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-bnj17 32666
This theorem is referenced by:  bnj251  32681  bnj252  32682  bnj345  32693
  Copyright terms: Public domain W3C validator